Skip to main content
Log in

Magnetic-Field Dependence of Thermoelectric Properties of Sintered Bi90Sb10 Alloy

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The magnetic-field dependence of the thermoelectric properties and dimensionless figure of merit (ZT) of a sintered Bi90Sb10 alloy were experimentally and theoretically evaluated. The Bi-Sb alloy was synthesized in a quartz ampule using the melting method, and the resultant ingot was then ground via ball milling. A sintered Bi90Sb10 alloy with a particle size in the range of several to several tens of micrometers was prepared using the spark plasma sintering (SPS) method. The magnetic-field dependence of the electrical resistivity, Seebeck coefficient, and thermal conductivity were experimentally evaluated at temperatures of 77–300 K for magnetic fields of up to 2.9 T. The results showed that ZT increased by 37% at 300 K under a 2.5-T magnetic field. A theoretical calculation of the magneto-Seebeck coefficient based on the Boltzmann equation with a relaxation time approximation was also performed. Hence, the experimental result for the magneto-Seebeck coefficient of the Bi90Sb10 alloy at 300 K was qualitatively and quantitatively explained. Specifically, the carrier scattering mechanism was shown to be acoustic phonon potential scattering and the carrier mobility ratio between the L- and T-points was found to be 3.3, which corresponds to the characteristics of a single crystal. It was concluded that the effect of the magnetic field on the Seebeck coefficient was demonstrated accurately using the theoretical calculation model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G.E. Smith and R. Wolfe, J. Appl. Phys. 33, 841 (1962).

    Article  Google Scholar 

  2. B. Lenoir, H. Scherrer, and T. Caillat, Semicond. Semimet. 69, 101 (2001).

    Article  Google Scholar 

  3. S. Tang and M.S. Dresselhaus, J. Mater. Chem. C 2, 4710 (2014).

    Article  Google Scholar 

  4. R. Wolfe and G.E. Smith, Appl. Phys. Lett. 1, 5 (1962).

    Article  Google Scholar 

  5. H. Scherrer and S. Scherrer, Thermoelectrics Handbook: Macro to Nano, ed. D.M. Rowe (Boca Raton, FL: CRC, 2006), p. 27.

    Google Scholar 

  6. M.V. Vedernikov and V.L. Kuznetsov, CRC Handbook of Thermoelectrics, ed. D.M. Rowe (Boca Raton, FL: CRC, 1995), p. 609.

    Google Scholar 

  7. W.M. Yim and A. Amith, Solid-State Electrons 15, 1141 (1972).

    Article  Google Scholar 

  8. P. Jandl and U. Birkholz, J. Appl. Phys. 76, 7351 (1994).

    Article  Google Scholar 

  9. V.M. Grabov and O.N. Uryupin, Thermoelectrics Handbook: Macro to Nano, ed. D.M. Rowe (Boca Raton, FL: CRC, 2006), p. 28.

    Google Scholar 

  10. S. Tanuma and M. Sakurai, J. Adv. Sci. 7, 163 (1995).

    Article  Google Scholar 

  11. M.E. Ertl, G.R. Pfister, and H.J. Goldsmid, Brit. J. Appl. Phys. 14, 161 (1963).

    Article  Google Scholar 

  12. C.B. Thomas and H.J. Goldsmid, Phys. Lett. 27A, 369 (1968).

    Article  Google Scholar 

  13. T. Komine, Y. Ishikawa, A. Suzuki, H. Shirai, and Y. Hasegawa, Proceedings of 22nd International Conference on Thermoelectrics, p. 500 (2003).

  14. Y. Hasegawa, T. Komine, Y. Ishikawa, A. Suzuki, and H. Shirai, Jpn. J. Appl. Phys. 43, 35 (2004).

    Article  Google Scholar 

  15. T. Teramoto, T. Komine, S. Yamamoto, M. Kuraishi, R. Sugita, Y. Hasegawa, and H. Nakamura, J. Appl. Phys. 104, 053714 (2008).

    Article  Google Scholar 

  16. E.E. Mendez, Ph.D. thesis, Massachusetts Institute of Technology (1979).

  17. B. Leinoir, A. Demouge, D. Perrin, H. Sherrer, S. Scherrer, M. Cassart, and J.P. Michenaud, J. Phys. Chem. Solids 56, 99 (1995).

    Article  Google Scholar 

  18. W.P. Lin, D.E. Wesolowski, and C.C. Lee, J. Mater. Sci. 22, 1313 (2011).

    Google Scholar 

  19. Y. Hasegawa, D. Nakamura, M. Murata, H. Yamamoto, and T. Komine, Rev. Sci. Ins. 81, 094901 (2010).

    Article  Google Scholar 

  20. R. Homma, Y. Hasegawa, H. Terakado, H. Morita, and T. Komine, Jpn. J. Appl. Phys. 54, 026602 (2015).

    Article  Google Scholar 

  21. P. Cucka and C.S. Barrett, Acta Cryst. 15, 865 (1962).

    Article  Google Scholar 

  22. C.L. Chien, F.Y. Yang, K. Liu, D.H. Reich, and P.C. Searson, Phys. Rev. Lett. 82, 3328 (1999).

    Article  Google Scholar 

  23. C. Kittel, Introduction to Solid State Physics (New York: Wiley, 1966).

    Google Scholar 

  24. G.A. Saunders and Z. Sumengen, Proc. R. Soc. Lond. A 329, 453 (1972).

    Article  Google Scholar 

  25. Y. Hasegawa, I. Ishikawa, T. Saso, H. Shirai, H. Morita, T. Komine, and H. Nakamura, Phys. B 382, 140 (2006).

    Article  Google Scholar 

  26. M.S. Narayana and N.G. Krishna, Phys. Stat. Sol. (a) 202, 2731 (2005).

    Article  Google Scholar 

  27. B.S. Farag and S. Tanuma, ISSP Technical Report, Ser. B No. 18 (1976)

  28. C.F. Gallo, B.S. Chandrasekhar, and P.H. Sutter, J. Appl. Phys. 34, 144 (1963).

    Article  Google Scholar 

  29. R. Wolfe and G.E. Smith, Phys. Rev. 129, 1086 (1963).

    Article  Google Scholar 

  30. B. Lax, Rev. Mod. Phys. 30, 122 (1958).

    Article  Google Scholar 

  31. J.P. Heremans and O.P. Hansen, J. Phys. C: Solid State Phys. 12, 3483 (1979).

    Article  Google Scholar 

  32. Y.M. Lin, Master’s thesis, Massachusetts Institute of Technology (2000)

  33. N.B. Brandt and S.M. Chudinov, Sov. Phys. JETP 32, 815 (1971).

    Google Scholar 

  34. B. Lenoir, M. Cassart, J.-P. Michenaud, H. Scherrer, and S. Scherrer, J. Phys. Chem. Solids 57, 89 (1996).

    Article  Google Scholar 

  35. J. Heremans, D.L. Partin, C.M. Thruch, G. Karczewski, M.S. Richardson, and J.K. Furdyna, Phys. Rev. B 48, 11329 (1993).

    Article  Google Scholar 

  36. Y. Hasegawa, H. Nakano, H. Morita, A. Kurokouchi, K. Wada, T. Komine, and H. Nakamura, J. Appl. Phys. 101, 033704 (2007).

    Article  Google Scholar 

  37. M. Murata, D. Nakamura, Y. Hasegawa, T. Komine, T. Taguchi, S. Nakamura, V. Jovovic, and J.P. Heremans, Appl. Phys. Lett. 94, 192104 (2009).

    Article  Google Scholar 

Download references

Acknowledgements

The author would like to thank Mr. Ryoei Homma of Saitama University and Mr. Masaru Kunii and Mr. Hirotaka Nishiate of AIST for their assistance with this research. This research was supported in part by JSPS KAKENHI (Grant numbers: 26886016 and 15H04142) and the Inamori Foundation, Izumi Science and Technology Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masayuki Murata.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Murata, M., Yamamoto, A., Hasegawa, Y. et al. Magnetic-Field Dependence of Thermoelectric Properties of Sintered Bi90Sb10 Alloy. J. Electron. Mater. 45, 1875–1885 (2016). https://doi.org/10.1007/s11664-015-4270-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-015-4270-y

Keywords

Navigation