Skip to main content
Log in

Effects of Cooling Rate on the Microstructure and Morphology of Sn-3.0Ag-0.5Cu Solder

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

This study explored the effect of the cooling rate on the microstructure and morphology of Sn-3.0Ag-0.5Cu (SAC305) lead-free solder. In the experiments, rapid cooling (P1: 63.17°C/s) of SAC305 solder resulted in high tensile strength (60.8 MPa) with no significant loss in ductility (strain >40%) due to the formation of fine-grained primary β-Sn (average size ∼14 μm) surrounded by a network-like fine eutectic structure consisting of β-Sn and particle-like Ag3Sn compound. As the cooling rate was reduced, the morphology of the Ag3Sn compound evolved progressively from a particle- to a needle-like form and finally to a leaf- or plate-like form. The cooling rate significantly affected the β-Sn grain size and the morphology of the Ag3Sn compound. Water cooling (at the fastest cooling rate of 100°C/s) of a solder sample resulted in a microstructure consisting of the finest structure of Ag3Sn and β-Sn with no Cu6Sn5, consequently exhibiting the highest hardness of the various specimens. By contrast, after cooling at the slowest rate of 0.008°C/s, the sample exhibited a coarse eutectic structure consisting of large plate-like Ag3Sn compound and isolated long rod-like Cu6Sn5 precipitates. This coarse structure resulted in both lower hardness and poorer tensile strength.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Suganuma, Environmentally Conscious Design and Inverse Manufacturing, 1999 Proceedings EcoDesign’99 (IEEE Xplore), (1999), p. 620.

  2. S.K. Kang, D.Y. Shih, D. Leonard, D.W. Henderson, T. Gosselin, S.I. Cho, J. Yu, and W.K. Choi, JOM 56, 34 (2004).

    Article  Google Scholar 

  3. K.S. Kim, S.H. Huh, and K. Suganuma, Mater. Sci. Eng. A 333, 106 (2002).

    Article  Google Scholar 

  4. F. Ochoa, J.J. Williams, and N. Chawla, JOM 55, 56 (2003).

    Article  Google Scholar 

  5. L.R. Garcia, W.R. Osório, and A. Garcia, Mater. Des. 32, 3008 (2011).

    Article  Google Scholar 

  6. J.H.L. Pang, L. Xu, X.Q. Shi, W. Zhou, and S.L. Ngoh, J. Electron. Mater. 33, 1219 (2004).

    Article  Google Scholar 

  7. H.T. Ma, L. Qu, M.L. Huang, L.Y. Gu, N. Zhao, and L. Wang, J. Alloys Compd. 537, 286 (2012).

    Article  Google Scholar 

  8. W.R. Osório, L.R. Garcia, L.C. Peixoto, and A. Garcia, Mater. Des. 32, 4763 (2011).

    Article  Google Scholar 

  9. X. Liu, M. Huang, Y. Zhao, C.M.L. Wu, and L. Wang, J. Alloys Compd. 492, 433 (2010).

    Article  Google Scholar 

  10. J. Gong, C. Liu, P.P. Conway, and V.V. Silberschmidt, Mater. Sci. Eng. A 427, 60 (2006).

    Article  Google Scholar 

  11. A.K. Gain, T. Fouzder, Y.C. Chan, A. Sharif, and W.K.C. Yung, J. Alloys Compd. 489, 678 (2010).

    Article  Google Scholar 

  12. W.R. Osório, J.E. Spinelli, C.R.M. Afonso, L.C. Peixoto, and A. Garcia, Electrochim. Acta 56, 8891 (2011).

    Article  Google Scholar 

  13. H.T. Lee and Y.F. Chen, J. Alloys Compd. 509, 2510 (2011).

    Article  Google Scholar 

  14. F. Ochoa, J.J. Williams, and N. Chawla, J. Electron. Mater. 32, 1414 (2003).

    Article  Google Scholar 

  15. J. Shen, Y.C. Liu, and H.X. Gao, J. Mater. Sci. 42, 5375 (2007).

    Article  Google Scholar 

  16. J. Sigelko, S. Choi, K.N. Subramanian, J.P. Lucas, and T.R. Bieler, J. Electron. Mater. 28, 1184 (1999).

    Article  Google Scholar 

  17. M. Muller, S. Wiese, and K.J. Wolter, Electronics Systemintegration Technology Conference Dresden (Germany: IEEE Xplore, 2006), p. 1303.

    Google Scholar 

  18. K.S. Kim, S.H. Huh, and K. Suganuma, J. Alloys Compd. 352, 226 (2003).

    Article  Google Scholar 

  19. K.W. Moon, W.J. Boettinger, U.R. Kattner, F.S. Biancaniello, and C.A. Handwerker, J. Electron. Mater. 29, 1122 (2000).

    Article  Google Scholar 

  20. L. Snugovsky, P. Snugovsky, D.D. Perovic, and J.W. Rutter, Mater. Sci. Technol. 21, 61 (2005).

    Article  Google Scholar 

  21. X. Deng, N. Chawla, K.K. Chawla, and M. Koopman, Acta Mater. 52, 4291 (2004).

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge financial support of this research by the Ministry of Science and Technology, Republic of China, Taiwan under Grant No. MOST 102-2221-E-006-294-MY3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hwa-Teng Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, HT., Huang, KC. Effects of Cooling Rate on the Microstructure and Morphology of Sn-3.0Ag-0.5Cu Solder. J. Electron. Mater. 45, 182–190 (2016). https://doi.org/10.1007/s11664-015-4189-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-015-4189-3

Keywords

Navigation