Skip to main content
Log in

Effect of Annealing on Microstructure and Thermoelectric Properties of Sb-Doped Mg2Si0.5Sn0.5 Solid Solution

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

A 0.33 mol.% Sb-doped Mg2Si0.5Sn0.5 solid solution was synthesized by combining a liquid–solid reaction and hot-pressing process. The effect of annealing (1068 K, 250 h) on microstructure and thermoelectric properties of the solid solution was studied by x-ray diffraction (XRD), scanning electron microscopy, electron probe microanalysis, transmission electron microscopy, and thermoelectric measurements. The successful synthesis of the solid solution with an antifluorite structure was confirmed by XRD. The as-prepared sample contained Si, Sn, and MgO inclusions tens of nanometers in size. After annealing, Si and Sn inclusions disappeared, while the MgO nanoparticles remained almost unchanged; the charge carrier concentration and electrical conductivity decreased and the lattice thermal conductivity increased. As a result, the thermoelectric figure of merit ZT ∼ 0.34 at 394 K for the as-prepared sample deteriorated to ∼0.24 at 388 K after the annealing. The results suggest the presence of a high density of point defects, such as Mg interstitials in the as-prepared sample. The density of these Mg interstitials was reduced by the annealing, thereby affecting the charge carrier concentration and electrical conductivity. The increase in the lattice thermal conductivity upon annealing is attributed to the disappearance of point defects, grain boundaries (grain growth) and Si and Sn inclusions, which all act as phonon scattering centers. Thus, point defects and nanoinclusions might be important for optimizing the thermoelectric properties of a material. This work provides new insights into the effect of annealing on the microstructure and its relationship with the thermoelectric properties of Sb-doped Mg2Si0.5Sn0.5 solid solutions. It also provides hints for developing Mg2Si0.5Sn0.5-based materials with superior thermoelectric properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L.E. Bell, Science 321, 1457 (2008).

    Article  Google Scholar 

  2. G.J. Snyder and E.S. Toberer, Nat. Mater. 7, 105 (2008).

    Article  Google Scholar 

  3. J.R. Szczech, J.M. Higgins, and S. Jin, J. Mater. Chem. 21, 4037 (2011).

    Article  Google Scholar 

  4. W. Liu, X.F. Tang, H. Li, J. Sharp, X.Y. Zhou, and C. Uher, Chem. Mater. 23, 5256 (2011).

    Article  Google Scholar 

  5. L.X. Chen, G.Y. Jiang, Y. Chen, Z.L. Du, X.B. Zhao, T.J. Zhu, J. He, and T.M. Tritt, J. Mater. Res. 26, 3038 (2011).

    Article  Google Scholar 

  6. W.J. Luo, M.J. Yang, F. Chen, Q. Shen, H.Y. Jiang, and L.M. Zhang, Mater. Trans. 51, 288 (2010).

    Article  Google Scholar 

  7. H.L. Gao, X.X. Liu, T.J. Zhu, S.H. Yang, and X.B. Zhao, J. Electron. Mater. 40, 830 (2011).

    Article  Google Scholar 

  8. Z.L. Du, T.J. Zhu, and X.B. Zhao, Mater. Lett. 66, 76 (2012).

    Article  Google Scholar 

  9. W. Liu, X.F. Tang, H. Li, K. Yin, J. Sharp, X.Y. Zhou, and C. Uher, J. Mater. Chem. 22, 13653 (2012).

    Article  Google Scholar 

  10. A.U. Khan, N. Vlachos, and T. Kyratsi, Scripta Mater. 69, 606 (2013).

    Article  Google Scholar 

  11. Y. Isoda, M. Held, S. Tada, and Y. Shinohara, J. Electron. Mater. 43, 2053 (2014).

    Article  Google Scholar 

  12. X. Zhang, H.L. Liu, S.H. Li, F.P. Zhang, Q.M. Lu, and J.X. Zhang, Mater. Lett. 123, 31 (2014).

    Article  Google Scholar 

  13. Y.C. Lan, A.J. Minnich, G. Chen, and Z.F. Ren, Adv. Funct. Mater. 20, 357 (2010).

    Article  Google Scholar 

  14. V.K. Zaitsev, M.I. Fedorov, E.A. Gurieva, I.S. Eremin, P.P. Konstantinov, A.Y. Samunin, and M.V. Vedernikov, Phys. Rev. B 74, 045207 (2006).

    Article  Google Scholar 

  15. Y. Isoda, N. Shioda, H. Fujiu, Y. Imai, and Y. Shinohara, Proceedings of the 25th International Conference on Thermoelectrics (2006), p.406.

  16. B. Poudel, Q. Hao, Y. Ma, Y.C. Lan, A. Minnich, B. Yu, X.A. Yan, D.Z. Wang, A. Muto, D. Vashaee, X.Y. Chen, J.M. Liu, M.S. Dresselhaus, G. Chen, and Z.F. Ren, Science 320, 634 (2008).

    Article  Google Scholar 

  17. C.J. Vineis, A. Shakouri, A. Majumdar, and M.G. Kanatzidis, Adv. Mater. 22, 3970 (2010).

    Article  Google Scholar 

  18. J.Q. He, J. Androulakis, M.G. Kanatzidis, and V.P. Dravid, Nano Lett. 12, 343 (2012).

    Article  Google Scholar 

  19. J.Q. He, L.D. Zhao, J.C. Zheng, J.W. Doak, H.J. Wu, H.Q. Wang, Y. Lee, C. Wolverton, M.G. Kanatzidis, and V.P. Dravid, J. Am. Chem. Soc. 135, 4624 (2013).

    Article  Google Scholar 

  20. J.J. Pulikkotil, D.J. Singh, S. Auluck, M. Saravanan, D.K. Misra, A. Dhar, and R.C. Budhani, Phys. Rev. B 86, 155204 (2012).

    Article  Google Scholar 

  21. S. Tada, Y. Isoda, H. Udono, H. Fujiu, S. Kumagai, and Y. Shinohara, J. Electron. Mater. 43, 1580 (2014).

    Article  Google Scholar 

  22. J.W. Liu, M. Song, M. Takeguchi, N. Tsujii, and Y. Isoda, J. Electron. Mater. 44, 407 (2015).

    Article  Google Scholar 

  23. L.X. Chen, G.Y. Jiang, Y. Chen, Z.L. Du, X.B. Zhao, T.J. Zhu, J. He, and T.M. Tritt, J. Mater. Res. 26, 3038 (2011).

    Article  Google Scholar 

  24. O.L. Krivanek, M.F. Chisholm, V. Nicolosi, T.J. Pennycook, G.J. Corbin, N. Dellby, M.F. Murfitt, C.S. Own, Z.S. Szilagyi, M.P. Oxley, S.T. Pantelides, and S.J. Pennycook, Nature 464, 571 (2010).

    Article  Google Scholar 

  25. D.A. Muller, Nat. Mater. 8, 263 (2009).

    Article  Google Scholar 

  26. G.S. Nolas, D. Wang, and M. Beekman, Phys. Rev. B 76, 235204 (2007).

    Article  Google Scholar 

  27. G.Y. Jiang, J. He, T.J. Zhu, C.G. Fu, X.H. Liu, L.P. Hu, and X.B. Zhao, Adv. Funct. Mater. 24, 3776 (2014).

    Article  Google Scholar 

  28. A. Kato, T. Yagi, and N. Fukusako, J. Phys. 21, 205801 (2009).

    Google Scholar 

  29. Z.L. Du, T.J. Zhu, Y. Chen, J. He, H.L. Gao, G.Y. Jiang, T.M. Tritt, and X.B. Zhao, J. Mater. Chem. 22, 6838 (2012).

    Article  Google Scholar 

  30. L.D. Zhao, S.H. Lo, J.Q. He, H. Li, K. Biswas, J. Androulakis, C.I. Wu, T.P. Hogan, D.Y. Chung, V.P. Dravid, and M.G. Kanatzidis, J. Am. Chem. Soc. 133, 20476 (2011).

    Article  Google Scholar 

  31. S. Wang and N. Mingo, Appl. Phys. Lett. 94, 203109 (2009).

    Article  Google Scholar 

  32. X.B. Zhao, S.H. Yang, Y.Q. Cao, J.L. Mi, Q. Zhang, and T.J. Zhu, J. Electron. Mater. 38, 1017 (2009).

    Article  Google Scholar 

  33. Z.L. Du, G.Y. Jiang, Y. Chen, H.L. Gao, T.J. Zhu, and X.B. Zhao, J. Electron. Mater. 41, 1222 (2012).

    Article  Google Scholar 

  34. X.J. Tan, W. Liu, H.J. Liu, J. Shi, X.F. Tang, and C. Uher, Phys. Rev. B 85, 205212 (2012).

    Article  Google Scholar 

  35. D.A. Pshenai-Severin, M.I. Fedorov, and A.Y. Samunin, J. Electron. Mater. 42, 1707 (2013).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minghui Song.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 168 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, JW., Song, M., Takeguchi, M. et al. Effect of Annealing on Microstructure and Thermoelectric Properties of Sb-Doped Mg2Si0.5Sn0.5 Solid Solution. J. Electron. Mater. 45, 602–614 (2016). https://doi.org/10.1007/s11664-015-4158-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-015-4158-x

Keywords

Navigation