Skip to main content
Log in

Lattice Thermal Transport in Si-based Nanocomposites for Thermoelectric Applications

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Silicon-germanium (SiGe) superlattices (SLs) have been studied for application as efficient thermoelectrics because of their low thermal conductivity, below that of bulk SiGe alloys. However, the cost of growing SLs is prohibitive, so Si-based nanocomposites, made by a ball-milling and sintering, have been proposed as a cost-effective replacement with similar properties. Because the lattice thermal conductivity of SiGe SLs is reduced by scattering from rough boundaries between layers, it is expected that grain boundary properties, for example roughness, orientation, and composition, will also substantially effect thermal transport in nanocomposites, resulting in many ways of adjusting their thermal conductivity by manipulation of grain size, shape, and crystal angle distributions. A model of phonon transport in nanocomposites was developed on the basis of the phonon Boltzmann transport equation. When nanocomposite structures were modeled by using a Voronoi tessellation to mimic the grains and their distribution, agreement with experimentally observed structures was excellent. To accurately treat phonon scattering from a series of atomically rough interfaces between the grains in the nanocomposite, we used a momentum-dependent specularity variable. Our results revealed thermal transport in Si-based nanocomposites is highly anisotropic and suggest further utilization of grain morphology to minimize thermal conductivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Hicks and M. Dresselhaus, Phys. Rev. B 47, 16631 (1993)

    Article  Google Scholar 

  2. G.J. Snyder and E.S. Toberer, Nature Mater. 7, 105 (2008)

    Article  Google Scholar 

  3. Y. Lan, A.J. Minnich, G. Chen, and Z. Ren, Adv. Func. Mater. 20, 357 (2010)

    Article  Google Scholar 

  4. M.S. Dresselhaus, G. Chen, M.Y. Tang, R.G. Yang, H. Lee, D.Z. Wang, Z.F. Ren, J.P. Fleurial, and P. Gogna, Adv. Mater. 19, 1043 (2007)

    Article  Google Scholar 

  5. H. Alam and S. Ramakrishna, Nano Energy 2, 190 (2013)

    Article  Google Scholar 

  6. F. Yang, T. Ikeda, G.J. Snyder, and C. Dames, J. Appl. Phys. 108, 034310 (2010)

    Article  Google Scholar 

  7. Y. Lan, B. Poudel, Y. Ma, D. Wang, M.S. Dresselhaus, G. Chen, and Z. Ren, Nano Lett. 9, 1419 (2009)

    Article  Google Scholar 

  8. C.W. Nan, R. Birringer, D.R. Clarke, and H. Gleiter, J. Appl. Phys. 81, 6692 (1997)

    Article  Google Scholar 

  9. J. Zhou, Y. Wang, J. Sharp, and R. Yang, Phys. Rev. B 85, 115320 (2012)

    Article  Google Scholar 

  10. N. Savvides and H.J. Goldsmid, J. Phys. C 13, 4671 (1980)

    Article  Google Scholar 

  11. Z. Wang, J.E. Alaniz, W. Jang, J.E. Garay, and C. Dames, Nano Lett. 11, 2206 (2011)

    Article  Google Scholar 

  12. M. Zebarjadi, K. Esfarjani, Z. Bian, and A. Shakouri, Nano Lett. 11, 225 (2011)

    Article  Google Scholar 

  13. K. Biswas, J. He, I.D. Blum, C.I. Wu, T.P. Hogan, D.N. Seidman, V.P. Dravid, and M.G. Kanatzidis, Nature 489, 414 (2012)

    Article  Google Scholar 

  14. M. Bartkowiak and G.D. Mahan, Phys. Rev. B 51, 10825 (1995)

    Article  Google Scholar 

  15. J.P. Crocombette and L. Gelebart, J. Appl. Phys. 106, 083520 (2009)

    Article  Google Scholar 

  16. J.S. Ferenc and Z. Nda, Phys A 385, 518 (2007)

    Article  Google Scholar 

  17. A. Priolo, H.M. Jaeger, A.J. Dammers, and S. Radelaar, Phys. Rev. B 46, 14889 (1992)

    Article  Google Scholar 

  18. Z. Fan, Y. Wu, X. Zhao, and Y. Lu, Comp. Mat. Sci. 29, 301 (2004)

    Article  Google Scholar 

  19. Z. Aksamija and I. Knezevic, Phys. Rev. B 82, 045319 (2010)

    Article  Google Scholar 

  20. Z. Aksamija and I. Knezevic, Phys. Rev. B 88, 155318 (2013)

    Article  Google Scholar 

  21. P. Carruthers, Rev. Mod. Phys. 33, 92 (1961)

    Article  Google Scholar 

  22. Z. Aksamija and I. Knezevic, Phys. Rev. B 86, 165426 (2012)

    Article  Google Scholar 

  23. J.E. Graebner, M.E. Reiss, L. Seibles, T.M. Hartnett, R.P. Miller, and C.J. Robinson, Phys. Rev. B 50, 3702 (1994)

    Article  Google Scholar 

  24. Z. Wang and N. Mingo, Appl. Phys. Lett. 99, 101903 (2011)

    Article  Google Scholar 

  25. W. Weber, Phys. Rev. B 15, 4789 (1977)

    Article  Google Scholar 

  26. L. Braginsky, N. Lukzen, V. Shklover, and H. Hofmann, Phys. Rev. B 66, 134203 (2002)

    Article  Google Scholar 

  27. G. Joshi, H. Lee, Y. Lan, X. Wang, G. Zhu, D. Wang, R.W. Gould, D.C. Cuff, M.Y. Tang, M.S. Dresselhaus, G. Chen, and Z. Ren, Nano Lett. 8, 4670 (2008)

    Article  Google Scholar 

  28. X.W. Wang, H. Lee, Y.C. Lan, G.H. Zhu, G. Joshi, D.Z. Wang, J. Yang, A.J. Muto, M.Y. Tang, J. Klatsky, S. Song, M.S. Dresselhaus, G. Chen, and Z.F. Ren, Appl. Phys. Lett. 93, 193121 (2008)

    Article  Google Scholar 

  29. C.J. Glassbrenner and G.A. Slack, Phys. Rev. 134, A1058 (1964)

    Article  Google Scholar 

  30. Z. Aksamija and I. Knezevic, Phys. Rev. B 90, 035419 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

The author thanks I. Knezevic for many fruitful discussions. This work was supported by the NSF through the CI TraCS fellowship awarded in 2011.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zlatan Aksamija.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aksamija, Z. Lattice Thermal Transport in Si-based Nanocomposites for Thermoelectric Applications. J. Electron. Mater. 44, 1644–1650 (2015). https://doi.org/10.1007/s11664-014-3505-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-014-3505-7

Keywords

Navigation