Skip to main content
Log in

Mass Fluctuation Effect in Ti1−x Nb x S2 Bulk Compounds

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The thermoelectric properties of Nb-substituted TiS2 compounds have been investigated in the temperature range of 300 K to 700 K. Polycrystalline samples in the series Ti1−x Nb x S2 with x varying from 0 to 0.05 were prepared using solid–liquid–vapor reaction and spark plasma sintering. Rietveld refinements of x-ray diffraction data are consistent with the existence of full solid solution for x ≤ 0.05. Transport measurements reveal that niobium can be considered as an electron donor when substituted at Ti sites. Consequently, the electrical resistivity and the absolute value of the Seebeck coefficient decrease as the Nb content increases, due to an increase in the carrier concentration. Moreover, due to mass fluctuation, the lattice thermal conductivity is reduced, leading to a slight increase of ZT values as compared with TiS2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G.A. Slack, CRC Handbook of Thermoelectrics, ed. D.M. Rowe (Boca Raton: CRC, 1995), p. 407.

    Google Scholar 

  2. G.J. Snyder and E.S. Toberer, Nat. Mater. 7, 105–114 (2008).

    Article  Google Scholar 

  3. H. Imai, Y. Shimakawa, and Y. Kubo, Phys. Rev. B 64, 241104 (2001).

    Article  Google Scholar 

  4. C. Wan, Y. Wang, N. Wang, and K. Koumoto, Materials 3, 2606–2617 (2010).

    Article  Google Scholar 

  5. E. Guilmeau, Y. Bréard, and A. Maignan, Appl. Phys. Lett. 99, 052107 (2011).

    Article  Google Scholar 

  6. M. Ohta, S. Satoh, T. Kuzuya, S. Hirai, M. Kunii, and A. Yamamoto, Acta Mater. 60, 7232–7240 (2012).

    Article  Google Scholar 

  7. S. Hebert, W. Kobayashi, and H. Muguerra, et al., Phys. Status Solidi A 210, 69 (2013).

    Article  Google Scholar 

  8. A. Maignan, E. Guilmeau, and F. Gascoin, et al., Sci. Technol. Adv. Mater. 13, 053003 (2012).

    Article  Google Scholar 

  9. P.C. Klipstein, A.G. Bagnall, and W.Y. Liang, J. Phys. C 14, 4067–4081 (1981).

    Article  Google Scholar 

  10. C.M. Fang, R.A. de Groot, and C. Haas, Phys. Rev. B. 56, 4455–4463 (1997).

    Article  Google Scholar 

  11. E.M. Logothetis, W.J. Kaiser, and C.A. Kukkonen, Phys. B 99, 193–198 (1980).

    Article  Google Scholar 

  12. M.S. Whittingham and J.A. Panella, Mater. Res. Bull. 16, 37–45 (1981).

    Article  Google Scholar 

  13. A.H. Thompson, F.R. Gamble, and C.R. Symon, Mater. Res. Bull. 10, 915–919 (1975).

    Article  Google Scholar 

  14. H. Kobayashi, K. Sakashita, M. Sato, T. Nozue, T. Suzuki, and T. Kamimura, Phys. B 237, 169–171 (1997).

    Article  Google Scholar 

  15. M.J. McKelvy and W.S. Glaunsinger, J. Solid State Chem. 66, 181–188 (1987).

    Article  Google Scholar 

  16. L.F. Mattheiss, Phys. Rev. B 8, 3719–3740 (1973).

    Article  Google Scholar 

  17. M.S. Whittingham and F.R. Gamble, Mater. Res. Bull. 10, 363–371 (1975).

    Article  Google Scholar 

  18. M.S. Whittingham, Prog. Solid State Chem. 12, 41–99 (1978).

    Article  Google Scholar 

  19. T. Uchida, K. Kohiro, H. Hinode, M. Wakihara, and M. Taniguchi, Mater. Res. Bull. 22, 935–942 (1987).

    Article  Google Scholar 

  20. C. Julien, I. Samaras, and O. Gorochov, Phys. Rev. B 45, 13390–13395 (1992).

    Article  Google Scholar 

  21. D. Li, X.Y. Qin, J. Zhang, and H.J. Li, Phys. Lett. A 348, 379–385 (2006).

    Article  Google Scholar 

  22. D. Li, X.Y. Qin, J. Liu, and H.S. Yang, Phys. Lett. A 328, 493–499 (2004).

    Article  Google Scholar 

  23. W. Sams, N. Lowhorn, T.M. Tritt, E. Abbott, and J.W. Kolis, Proceedings of 24th International Conference on Thermoelectrics (Piscataway: IEEE, 2005), pp. 99–101.

    Google Scholar 

  24. M. Shimakawa, H. Maki, H. Nishihara, and K. Hayashi, Mater. Res. Bull. 32, 689 (1997).

    Article  Google Scholar 

  25. S. Furuseth, J. Alloys Compd. 178, 211–215 (1992).

    Article  Google Scholar 

  26. Y. Tison, et al., Surf. Sci. 563, 83 (2004).

    Article  Google Scholar 

  27. S.K. Srivastava, T.K. Mandal, and B.K. Samantaray, Synth. Met. 90, 135 (1997).

    Article  Google Scholar 

  28. J. Callaway, Phys. Rev. 113, 1046 (1959).

    Article  Google Scholar 

  29. M. Inoue, Y. Muneta, H. Negishi, and M. Sasaki, J. Low Temp. Phys. 63, 235 (1986).

    Article  Google Scholar 

  30. P.G. Klemens, Proc. Phys. Soc. (London), A68, 1113 (1955).

    Article  Google Scholar 

  31. B. Abeles, Phys. Rev. 131, 1906 (1963).

    Article  Google Scholar 

  32. M.-L. Doublet, S. Remy, and F. Lemoigno, J. Chem. Phys. 113, 5879 (2000).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Guilmeau.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beaumale, M., Barbier, T., Bréard, Y. et al. Mass Fluctuation Effect in Ti1−x Nb x S2 Bulk Compounds. J. Electron. Mater. 43, 1590–1596 (2014). https://doi.org/10.1007/s11664-013-2802-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-013-2802-x

Keywords

Navigation