Skip to main content
Log in

Influence of Photolithography on the Cross-Sectional Shape of Polysiloxane as an Optical Waveguide Material on Printed Circuit Boards

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Optical waveguide cross-sectional shapes that deviate from rectangles or squares may cause significant loss of signal. In this study, a photolithography approach was adopted to fabricate waveguides on printed circuit boards, using photo-imageable polysiloxane as a waveguide material. The effects of I-line ultraviolet (UV) lamp exposure, 355-nm Nd:YAG laser direct imaging, and 248-nm excimer laser direct imaging on the cross-sectional shape of waveguides were investigated. For I-line UV lamp exposure, increasing the exposure time could cause changes in the tilt angle of the waveguides from negative (inverted trapezoid) to positive (trapezoid). To obtain rectangular waveguides, the optimum I-line UV lamp exposure time was found to be around 150 s. From the results for 355-nm Nd:YAG laser direct imaging, the width and tilt angle of the waveguides varied with the energy density of the laser beam irradiating the core materials, being controlled by the repetition rate and focus. Lowering the laser energy density could produce waveguides with small widths and tilt angles. Excimer laser direct imaging at 248 nm was found to be unsuitable for waveguide patterning since the core materials could not be cured at this wavelength.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Griese, Print. Circuit Fabr. 25, 20 (2002).

    Google Scholar 

  2. H.T. Holden, Circuit World 29, 42 (2003).

    Article  Google Scholar 

  3. S. Kopetz, E. Rabe, W.J. Kang, and A. Neyer, Electron. Lett. 40, 668 (2004).

    Article  CAS  Google Scholar 

  4. K.B. Yoon, I.K. Cho, and S.H. Ahn, J. Lightwave Technol. 22, 2119 (2004).

    Article  Google Scholar 

  5. H. Ma, A.K.-Y. Jen, and L.R. Dalton, Adv. Mater. 14, 1339 (2002).

    Article  CAS  Google Scholar 

  6. R. Dangel, C. Berger, R. Beyeler, L. Dellmann, M. Gmür, R. Hamelin, F. Horst, T. Lamprecht, T. Morf, S. Oggioni, M. Spreafico, and B.J. Offrein, IEEE Trans. Adv. Packag. 31, 759 (2008).

    Article  CAS  Google Scholar 

  7. F. Grillot, L. Vivien, S. Laval, D. Pascal, and E. Cassan, IEEE Photonics Technol. Lett. 16, 1661 (2004).

    Article  Google Scholar 

  8. S. Kopetz, D. Cai, E. Rabe, and A. Neyer, Int. J. Electron. Commun. (AEÜ) 61, 163 (2007).

    Article  Google Scholar 

  9. M. Immonen, J. Wu, H.J. Yan, P.-F. Chen, J.X. Xu, and T. Rapala-Virtanen, Circuit World 38, 104 (2012).

    CAS  Google Scholar 

  10. S.S. Zakariyah, P.P. Conway, D.A. Hutt, D.R. Selviah, K. Wang, J. Rygate, J. Calver, and W. Kandulski, J. Lightwave Technol. 29, 3566 (2011).

    Article  CAS  Google Scholar 

  11. G.V. Steenberge, N. Hendrickx, E. Bosman, J.V. Erps, H. Thienpont, and P.V. Daele, IEEE Photonics Technol. Lett. 18, 1106 (2006).

    Article  Google Scholar 

  12. S.S. Zakariyah, P.P. Conway, D.A. Hutt, K. Wang, and D.R. Selviah, Opt. Laser Eng. 50, 1752 (2012).

    Article  Google Scholar 

  13. T. Bierhoff, Y. Sonmez, J. Schrage, A. Himmler, E. Griese, G. Mrozynski, Proceedings 6th IEEE Workshop on Signal Propagation on Interconnects (Torino, Italy: Politecnico di Torino, 2002), p. 47.

  14. K. Tamaki, H. Takase, Y. Eriyama, and T. Ukachi, J. Photopolym. Sci. Technol. 16, 639 (2003).

    Article  CAS  Google Scholar 

  15. LIGHTLINK™ Optical Waveguide Technology Process Manual, Dow, Rev. 3.

  16. Technical Data Sheet of LIGHTLINK™ XP-5202A Waveguide Clad, Dow, Rev. 1.

  17. Technical Data Sheet of LIGHTLINK™ XP-6701A Waveguide Core, Dow, Rev. 1.

  18. M. I. Gurian, Printed Circuit Handbook, 6th ed., Chap. 34, ed. C.F. Coombs, Jr. (New York: McGraw-Hill, 2008).

  19. Laser Drill System Application Guides-Model 5150/5200, ESI, June 1999.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kam-chuen Yung.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yung, Kc., Lee, Cp., Wong, Ch. et al. Influence of Photolithography on the Cross-Sectional Shape of Polysiloxane as an Optical Waveguide Material on Printed Circuit Boards. J. Electron. Mater. 42, 3494–3501 (2013). https://doi.org/10.1007/s11664-013-2732-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-013-2732-7

Keywords

Navigation