Skip to main content
Log in

Constitutive Behavior of Mixed Sn-Pb/Sn-3.0Ag-0.5Cu Solder Alloys

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

An Erratum to this article was published on 22 February 2012

Abstract

During the transition from Pb-containing solders to Pb-free solders, joints composed of a mixture of Sn-Pb and Sn-Ag-Cu often result from either mixed assemblies or rework. Comprehensive characterization of the mechanical behavior of these mixed solder alloys resulting in a deformationally complete constitutive description is necessary to predict failure of mixed alloy solder joints. Three alloys with 1 wt.%, 5 wt.%, and 20 wt.% Pb were selected so as to represent reasonable ranges of Pb contamination expected from different 63Sn-37Pb components mixed with Sn-3.0Ag-0.5Cu. Creep and displacement-controlled tests were performed on specially designed assemblies at temperatures of 25°C, 75°C, and 125°C using a double lap shear test setup that ensures a nearly homogeneous state of plastic strain at the joint interface. The observed changes in creep and tensile behavior with Pb additions were related to phase equilibria and microstructure differences observed through differential scanning calorimetric and scanning electron microscopic cross-sectional analysis. As Pb content increased, the steady-state creep strain rates increased, and primary creep decreased. Even 1 wt.% Pb addition was sufficient to induce substantially large creep strains relative to the Sn-3.0Ag-0.5Cu alloy. We describe rate-dependent constitutive models for Pb-contaminated Sn-Ag-Cu solder alloys, ranging from the traditional time-hardening creep model to the viscoplastic Anand model. We illustrate the utility of these constitutive models by examining the inelastic response of a chip-scale package (CSP) under thermomechanical loading through finite-element analysis. The models predict that, as Pb content increases, total inelastic dissipation decreases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Darveaux and K. Banerji, IEEE Trans. Comp. Hybrids Manuf. Technol. 15, 1013 (1992).

    Article  CAS  Google Scholar 

  2. D. Bhate, D. Chan, G. Subbarayan, T.C. Chiu, V. Gupta, and D.R. Edwards, IEEE Trans. Compon. Packag. Technol. 31, 622 (2008).

    Google Scholar 

  3. K. Mysore, G. Subbarayan, V. Gupta, and R. Zhang, IEEE Trans. Electron. Packag. Manuf. 32, 221 (2009).

    Google Scholar 

  4. P. Towashiraporn, G. Subbarayan, and C. Desai, Int. J. Solid. Struct. 42, 4468 (2005).

    Article  Google Scholar 

  5. L. Anand, J. Eng. Mater. Technol. 104, 12 (1982).

    Article  Google Scholar 

  6. S.B. Brown, K.H. Kim, and L. Anand, Int. J. Plasticity 5, 95 (1989).

    Article  Google Scholar 

  7. G.Z. Wang, Z.N. Cheng, K. Becker, and J. Wilde, J. Electron. Packag. 123, 247 (2001).

    Article  CAS  Google Scholar 

  8. H.J. Frost and M.F. Ashby, Deformation-mechanism maps: the plasticity of creep and metals and ceramics (Oxford: Pergamon, 1982), pp. 1–16.

    Google Scholar 

  9. P. Limaye, R. Labie, B. Vandevelde, D. Vandepitte, and B. Verlinden, Proc. 9th Electron. Packag. Technol. Conf. (2007), p. 703.

  10. Y. Zhang, C. Mitchell, J. Suhling, J. Evans, P. Lall, and M. Bozack, Proc. Surf. Mt. Technol. Int. Conf. (2009), p. 642.

  11. Y. Zhang, K. Kurumaddali, J.C. Suhling, P. Lall, and M.J. Bozack, Proc. 59th Electron. Compon. Technol. Conf. (2009), p. 759.

  12. Y.W. Yen, W.T. Chou, H.C. Chen, W.K. Liou, and C. Lee, Int. J. Mater. Res. 99, 1256 (2008).

    Article  CAS  Google Scholar 

  13. T. Woodrow, Proc. Surf. Mt. Technol. Int. Conf. (2006), p. 24.

  14. M.D. Abramoff, P.J. Magalhaes, and S.J. Ram, Biophotonics Int. 11, 36 (2004).

    Google Scholar 

  15. U.R. Kattner and C.A. Handwerker, Z. Metallkd. 92, 740 (2001).

    CAS  Google Scholar 

  16. U.R. Kattner, personal communication.

  17. D. Swenson, J. Mater. Sci. Mater. Electron. 18, 39 (2007).

    Article  CAS  Google Scholar 

  18. C.E. Ho, S.C. Yang, and C.R. Kao, J. Mater. Sci. Mater. Electron. 18, 155 (2006).

    Article  Google Scholar 

  19. I. Dutta, P. Kumar, and G. Subbarayan, JOM 61, 29 (2009).

    Article  CAS  Google Scholar 

  20. C. Basaran and J. Jiang, Mech. Mater. 34, 349 (2002).

    Article  Google Scholar 

  21. N. Chawla, F. Ochoa, V.V. Ganesh, and X. Deng, J. Mater. Sci. Mater. Electron. 15, 385 (2004).

    Article  CAS  Google Scholar 

  22. R. Sidhu, X. Deng, and N. Chawla, Metall. Mater. Trans. A 39, 349 (2008).

    Article  Google Scholar 

  23. H. Song, J. Morris, and F. Hua, JOM 54, 30 (2002).

    Article  CAS  Google Scholar 

  24. F. Garofalo, Fundamentals of Creep and Creep-Rupture in Metals (New York: Macmillan, 1965).

    Google Scholar 

  25. D. Hillman, T. Pearson, and R. Wilcoxon, Proc. Surf. Mt. Technol. Int. Conf. (2010).

  26. T. Woodrow, Proc. Surf. Mt. Technol. Int. Conf. (2010).

  27. D. Chan, D. Bhate, G. Subbarayan, and L. Nguyen ASME Conf. Proc. (2009), p. 199.

  28. D. Chan, G. Subbarayan, and L. Nguyen, J. Electron. Mater., in press.

  29. D. Bhate, K. Mysore, and G. Subbarayan, Mech. Adv. Mater. Str., in press.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Subbarayan.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s11664-012-1993-x.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tucker, J., Chan, D., Subbarayan, G. et al. Constitutive Behavior of Mixed Sn-Pb/Sn-3.0Ag-0.5Cu Solder Alloys. J. Electron. Mater. 41, 596–610 (2012). https://doi.org/10.1007/s11664-011-1812-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-011-1812-9

Keywords

Navigation