Skip to main content

Advertisement

Log in

Effect of strain rate on mechanical behavior of Sn0.3Ag0.7Cu solder at macro- and micro-scales

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

At present, there have been many researches on the effect of trace elements on the mechanical properties of Sn–Ag–Cu solder, and the methods used are mainly shear test or nanoindentation test. However, the size of structural solder joints in electronic packaging has reached the order of micrometers, and the mechanical behavior characteristics related to the strain rate of solder at the micro-scale are obviously more needed for the application of small-scale structural solder joints. For this reason, this paper selects Sn0.3Ag0.7Cu solder with superior comprehensive properties such as ductility and shear strength and low cost, and uses universal testing machine and Split Hopkinson Pressure Bar to perform quasi-static and dynamic compression tests on it. After fitting the Johnson–Cook constitutive model parameters of Sn0.3Ag0.7Cu, the dynamic indentation process at the micro-scale was simulated by ABAQUS, and the effect of strain rate on the mechanical behavior of the material at the macro-scale and micro-scale was analyzed, respectively. Our macro test results show that the yield strength of Sn0.3Ag0.7Cu solder is about 28.74 MPa. Under quasi-static load, the rate of increase of the stress value in the strain hardening stage will increase with the increase of the strain rate; while under dynamic load, the stress value corresponding to different strain rates does not increase significantly, and the main difference lies in the magnitude of plastic strain. In our numerical simulation of dynamic indentation, the result shows that when Sn0.3Ag0.7Cu solder is subjected to a high strain rate load at the micro-scale, a certain degree of hardening occurs in the middle and late stages of indentation propagation. At the same time, the calculated load–displacement curves indicate that the plastic flow ability of Sn0.3Ag0.7Cu solder in the micro-scale increases with the increase of the indentation expansion rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. P. Tunthawiroon, K. Kanlayasiri, Trans. Nonferr. Met. Soc. China 29, 1696–1704 (2019)

    Article  CAS  Google Scholar 

  2. R. Sui, J.B. Wang, W.J. Ci et al., Ceram. Int. 45, 12920–12925 (2019)

    Article  CAS  Google Scholar 

  3. J. Wu, S.B. Xue, J.W. Wang et al., J. Alloys Compd. 784, 471–487 (2019)

    Article  CAS  Google Scholar 

  4. J. Wu, S.B. Xue, J.W. Wang et al., J. Alloys Compd. 799, 124–136 (2019)

    Article  CAS  Google Scholar 

  5. H.Z. Wang, X.W. Hu, X.X. Jiang, Mater. Charact. 163, 110287 (2020)

    Article  CAS  Google Scholar 

  6. Q. Guo, S.Y. Sun, Z.H. Zhang et al., Microelectron. Reliab. 80, 144–148 (2018)

    Article  CAS  Google Scholar 

  7. Z.H. Li, Y. Tang, Q.W. Guo et al., J. Alloys Compd. 818, 152893 (2020)

    Article  CAS  Google Scholar 

  8. Y. Tang, Q.W. Guo, S.M. Luo et al., J. Alloys Compd. 778, 741–755 (2019)

    Article  CAS  Google Scholar 

  9. Z.H. Li, Y. Tang, Q.W. Guo et al., J. Alloys Compd. 789, 150–162 (2020)

    Article  Google Scholar 

  10. K. Kanlayasiri, K. Sukpimai, J. Alloys Compd. 668, 169–175 (2016)

    Article  CAS  Google Scholar 

  11. A. Nourani, J.K. Spelt, Eng. Fract. Mech. 142, 64–78 (2015)

    Article  Google Scholar 

  12. D.Y. Chen, M. Osterman, A. Dasgupta, Microelectron. Reliab. 109, 113651 (2020)

    Article  CAS  Google Scholar 

  13. H.Y. Chen, Z.L. Chen, Z.M. Lai et al., J. Mater. Process. Technol. 266, 619–626 (2019)

    Article  CAS  Google Scholar 

  14. P. Lall, D. Zhang, V. Yadav et al., Microelectron. Reliab. 62, 4–17 (2016)

    Article  CAS  Google Scholar 

  15. V.L. Nguyen, C.S. Chung, H.K. Kim, Microelectron. Reliab. 55, 2808–2816 (2015)

    Article  CAS  Google Scholar 

  16. S. Msolli, A. Baazaoui, J. Alexis et al., Eng. Fract. Mech. 188, 470–492 (2018)

    Article  Google Scholar 

  17. X.Y. Niu, C. Chen, L.L. Shen et al., J. Mater. Sci.: Mater. Electron. 30, 18678–18685 (2019)

    CAS  Google Scholar 

  18. R.M. Shalaby, M. Kamal, E.A.M. Ali et al., Mater. Sci. Eng., A 690, 446–452 (2017)

    Article  Google Scholar 

  19. X.Y. Niu, L.L. Shen, C. Chen et al., J. Mater. Sci.: Mater. Electron. 30, 14611–14620 (2019)

    CAS  Google Scholar 

  20. S. Msolli, J. Alexis, O. Dalverny et al., Microelectron. Reliab. 55, 164–171 (2015)

    Article  CAS  Google Scholar 

  21. X. Long, W.B. Tang, Y.H. Feng et al., Int. J. Mech. Sci. 140, 60–67 (2018)

    Article  Google Scholar 

  22. Y.K. Wang, W.S. Liu, Y.Z. Ma et al., Mater. Sci. Eng., A 610, 161–170 (2014)

    Article  CAS  Google Scholar 

  23. S. Chellvarajoo, M.Z. Abdullah, C.Y. Khor, Mater. Des. 82, 206–215 (2015)

    Article  CAS  Google Scholar 

  24. R.M. Shalaby, Mater. Sci. Eng., A 560, 86–95 (2013)

    Article  CAS  Google Scholar 

  25. H. Vafaeenezhad, S.H. Seyedein, M.R. Aboutalebi et al., Microelectron. Eng. 207, 55–65 (2019)

    Article  CAS  Google Scholar 

  26. J. Gomez, C. Basaran, Int. J. Solids Struct. 43, 1505–1527 (2006)

    Article  CAS  Google Scholar 

  27. W.H. Liu, Y.K. Wang, Y.Z. Ma et al., Mater. Sci. Eng., A 653, 13–22 (2016)

    Article  CAS  Google Scholar 

  28. B.J. Koeppel, G. Subhash, Exp. Tech. 21(3), 16–18 (1997)

    Article  Google Scholar 

  29. L. Sun, M.H. Chen, L. Zhang et al., Acta Metall. Sinica. 53(05), 615–621 (2017). In Chinese

    CAS  Google Scholar 

  30. X.Y. Niu, Y.J. Yu, L.H. Ma et al., Appl. Phys. A 122, 597 (2016)

    Article  Google Scholar 

  31. G. Subhash, B.J. Koeppel, A. Chandra, J. Eng. Mater. Technol. 121(3), 257–263 (1999)

    Article  Google Scholar 

  32. B.J. Koeppel, G. Subhash, Wear 224, 56–67 (1999)

    Article  CAS  Google Scholar 

  33. R.J. Anton, G. Subhash, Wear 239, 27–35 (2000)

    Article  CAS  Google Scholar 

  34. E.J. Haney, G. Subhash, J. Eur. Ceram. Soc. 31, 1713–1721 (2011)

    Article  CAS  Google Scholar 

  35. X.Y. Niu, S.Z. Li, X.C. Geng et al., Mater. Today Commun. 25, 101275 (2020)

    Article  Google Scholar 

  36. Z. Xie, Y.J. Guan, J. Lin et al., Ultrasonics 96, 1–9 (2019)

    Article  CAS  Google Scholar 

  37. Y.H. Zhao, J. Sun, J.F. Li et al., J. Alloys Compd. 723, 179–187 (2017)

    Article  CAS  Google Scholar 

  38. M.E. Korkmaz, M. Günay, P. Verleysen, J. Alloys Compd. 801, 542–549 (2019)

    Article  CAS  Google Scholar 

  39. J.F. Qin, Y. Ma, X.H. Yao et al., Rare Met. Mater. Eng. 47(02), 618–623 (2018). In Chinese

    Google Scholar 

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation of China (Grant No. 11502065), and the Natural Science Foundation of Hebei Province (Grant No. A2019201338).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoyan Niu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Niu, X., Geng, X., Li, S. et al. Effect of strain rate on mechanical behavior of Sn0.3Ag0.7Cu solder at macro- and micro-scales. J Mater Sci: Mater Electron 31, 18763–18776 (2020). https://doi.org/10.1007/s10854-020-04417-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-04417-0

Navigation