Skip to main content
Log in

Thermomechanical Stress and Strain in Solder Joints During Electromigration

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Thermomechanical stress and strain in the solder joints of a dummy area array package were studied as electromigration occurred. A current density of 0.4 × 104 A/cm2 was applied to this package, constructed with 9 × 9 solder joints in a daisy chain, to perform the electromigration test. After 37 h, the first joint on the path of the electron flow broke off at the cathode, and the first three solder joints all exhibited a typical accumulation of intermetallic compounds at the anode. Different solder joints exhibited dissimilar electromigration states, such as steady state and nonsteady state. Finite element analysis indicated that during steady-state electromigration, although the symmetrical structure produced uniform distributions of current density and Joule heating in all solder joints, the distribution of temperature was nonuniform. This was due to the imbalanced heat dissipation, which in turn affected the distribution of thermomechanical stress and strain in the solder joints. The maximum thermomechanical stress and strain, as well the highest temperature and current crowding, appeared in the Ni/Cu layer of each joint. The strain in the Ni/Cu layer was significant along the z-axis, but was constrained in the xy plane. The thermomechanical stress and strain increased with advancing electromigration; thus, a potential delamination between the Ni/Cu layer and the printed circuit board could occur.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K.N. Tu, J. Appl. Phys., 94, 5451 (2003). doi:10.1063/1.1611263

    Article  ADS  CAS  Google Scholar 

  2. K. N. Tu, A. M. Gusak and M. Li, J. Appl. Phys., 93, 1335 (2003). doi:10.1063/1.1517165

    Article  ADS  CAS  Google Scholar 

  3. M. O. Alam, Y. C. Chan and K. N. Tu, Chem. Mater., 15, 4340 (2003). doi:10.1021/cm034692c

    Article  CAS  Google Scholar 

  4. Y. T. Yeh, C. K. Chou, Y. C. Hsu, Chih Chen and K.N. Tu, Appl. Phys. Lett., 86, 203504 (2005). doi:10.1063/1.1929870

    Article  ADS  Google Scholar 

  5. M. O. Alam, Y. C. Chan, K. N. Tu and J. K. Kivilahti, Chem. Mater., 17, 2223 (2005). doi:10.1021/cm0478069

    Article  CAS  Google Scholar 

  6. Y. H. Lin, C. M. Tsai, Y. C. Hu, Y. L. Lin and C. R. Kao, J. Electron. Mater., 34, 27 (2005). doi:10.1007/s11664-005-0176-4

    Article  ADS  CAS  Google Scholar 

  7. Q. L. Yang and J. K. Shang, J. Electron. Mater., 34, 1363 (2005). doi:10.1007/s11664-005-0191-5

    Article  ADS  CAS  Google Scholar 

  8. L.H. Xu, H.L. Pang and K.N. Tu, Appl. Phys. Lett., 89, 221909 (2006). doi:10.1063/1.2397549

    Article  ADS  Google Scholar 

  9. L.Y. Zhang, S.Q. Ou, J. Huang, K. N. Tu, S. Gee and L. Nguyen, Appl. Phys. Lett., 88, 012106 (2006). doi:10.1063/1.2158702

    Article  ADS  Google Scholar 

  10. S.W. Liang, Y.W. Chang and C. Chen, Appl. Phys. Lett., 88, 172108 (2006). doi:10.1063/1.2198809

    Article  ADS  Google Scholar 

  11. J. W. Nah, F. Ren, K. N. Tu, S. Venk and G. Camara, J. Appl. Phys., 99, 023520 (2006). doi:10.1063/1.2163982

    Article  ADS  Google Scholar 

  12. S. W. Liang, Y. W. Chang, T. L. Shao, Chih Chen and K. N. Tu, Appl. Phys. Lett., 89, 022117 (2006). doi:10.1063/1.2220550

    Article  ADS  Google Scholar 

  13. Y. L. Lin, C. W. Chang, C. M. Tsai, C. W. Lee and C. R. Kao, J. Electron. Mater., 35, 1010 (2006). doi:10.1007/BF02692561

    Article  ADS  CAS  Google Scholar 

  14. M.O. Alam, B. Y. Wu, Y.C. Chan and K. N. Tu, Acta Mater., 54, 613 (2006). doi:10.1016/j.actamat.2005.09.031

    Article  CAS  Google Scholar 

  15. C. Y. Hsu, D. J. Yao, S. W. Liang, Chih Chen and Everett C C Yeh, J. Electron. Mater., 35, 947 (2006). doi:10.1007/BF02692552

    Article  ADS  CAS  Google Scholar 

  16. Y. S. Lai, K. M. Chen, C. L. Kao, C. W. Lee and Y. T. Chiu, Microelectron. Reliab., 47, 1273 (2007). doi:10.1016/j.microrel.2006.09.023

    Article  CAS  Google Scholar 

  17. X.F. Zhang, J.D. Guoa and J.K. Shang, Scripta Mater., 57, 513 (2007). doi:10.1016/j.scriptamat.2007.05.023

    Article  CAS  Google Scholar 

  18. L. Zhang, Z.G. Wang and J.K. Shang, Scripta Mater., 56, 381 (2007). doi:10.1016/j.scriptamat.2006.10.043

    Article  CAS  Google Scholar 

  19. J.S. Zhang, Y.C. Chan, Y.P. Wu, H.J. Xi, F.S. Wu and B.Y. Wu, J. Alloy. Compd., 458, 492 (2008). doi:10.1016/j.jallcom.2007.04.040

    Article  CAS  Google Scholar 

  20. H. Ye, C. Basaran and D.C. Hopkins, Int. J. Solids Struct., 40, 4021 (2003). doi:10.1016/S0020-7683(03)00175-6

    Article  Google Scholar 

  21. C. Basaran and M. Lin, H. Ye, Int. J. Solids Struct., 40, 7315 (2003). doi:10.1016/j.ijsolstr.2003.08.018

    Article  MATH  Google Scholar 

  22. H. Ye, D.C. Hopkins and C. Basaran, Microelectron. Reliab., 43, 2021 (2003). doi:10.1016/S0026-2714(03)00131-8

    Article  CAS  Google Scholar 

  23. H. Ye, C. Basaran and D.C. Hopkins, Int. J. Solids Struct., 41, 4939 (2004). doi:10.1016/j.ijsolstr.2004.04.002

    Article  Google Scholar 

  24. H. Ye, C. Basaran and D.C. Hopkins, Int. J. Solids Struct., 41, 4959 (2004). doi:10.1016/j.ijsolstr.2004.04.003

    Article  Google Scholar 

  25. M. Lin and C. Basaran, Comput. Mater. Sci., 34, 82 (2005). doi:10.1016/j.commatsci.2004.10.007

    Article  Google Scholar 

  26. C. Basaran and M. H. Lin, Mech. Mater., 40, 66 (2008). doi:10.1016/j.mechmat.2007.06.006

    Article  Google Scholar 

  27. http://www.boulder.nist.gov/div853/lead%20free/props01.html. Release 4.0, 1 (2003).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J.S. Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, J., Xi, H., Wu, Y. et al. Thermomechanical Stress and Strain in Solder Joints During Electromigration. J. Electron. Mater. 38, 678–684 (2009). https://doi.org/10.1007/s11664-009-0685-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-009-0685-7

Keywords

Navigation