Skip to main content
Log in

Carbothermal Reduction of Quartz with Carbon from Natural Gas

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Carbothermal reaction between quartz and two different carbons originating from natural gas were investigated in this paper. One of two carbons is the commercial carbon black produced from natural gas in a medium thermal production process. The other carbon is obtained from natural gas cracking at 1273 K (1000 °C) deposited directly on the quartz pellet. At the 1923 K (1650 °C) and CO atmosphere, the impact of carbon content, pellet structure, gas transfer, and heating rate are investigated in a thermo-gravimetric furnace. The reaction process can be divided into two steps: an initial SiC-producing step followed by a SiO-producing step. Higher carbon content and increased gas transfer improves the reaction rate of SiC-producing step, while the thicker carbon coating in carbon-deposited pellet hinders reaction rate. Better gas transfer of sample holder improves reaction rate but causes more SiO loss. Heating rate has almost no influence on reaction. Mass balance analysis shows that mole ratios between SiO2, free carbon, and SiC in the SiC-producing step and SiO-producing step in CO and Ar fit the reaction SiO2(s) + 3 C(s) = SiC(s) + 2 CO(g). SiC-particle and SiC-coating formation process in mixed pellet and carbon-deposited pellet are proposed. SiC whiskers formed in the voids of these two types of pellets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. A. Schei, Tuseth, J.K. and Tveit, H.: Production of High Silicon Alloys. (Tapir Forlag, Trondheim, 1998).

    Google Scholar 

  2. M. Tangstad: Handbook of Ferroalloys: Theory and Technology (Chapter 6—Ferrosilicon and Silicon Technology), Elsevier S & T (USD), 2013.

  3. E. H. Myrhaug: Non-fossil reduction materials in the silicon process-properties and behavior. (Norwegian University of Science and Technology, Trondheim, 2003).

    Google Scholar 

  4. V. Myrvågnes: Analyses and characterization of fossil carbonaceous material for silicon production. (Norwegian University of Science and Technology, Trondheim, 2008).

    Google Scholar 

  5. L. P. Hunt, J. P. Dismukes, J. A. Amick, A. Schei and K. Larsen, J. Electrochem. Soc. 1984, vol. 131, pp. 1683-1686.

    Article  Google Scholar 

  6. H. -P. Martin, E. Müller, Y. Knoll, R. Strienitz and G. Schuster, Journal of Materials Science Letters 1995, vol. 14, pp. 620-622.

    Article  Google Scholar 

  7. T.L.Y. Cheung and D.H.L. Ng, Journal of the American Ceramic Society 2007, vol. 90, pp. 559-564.

    Article  Google Scholar 

  8. A. Selvam, N. G. Nair, and P. Singh, Journal of Materials Science Letters 1998, vol. 17, pp. 57-60.

    Article  Google Scholar 

  9. R. Alizadeh, E. Jamshidi and G. Zhang, Journal of Natural Gas Chemistry 2009, vol. 18, pp. 124-130.

    Article  Google Scholar 

  10. B. Monsen, L. Kolbeinsen, S. Prytz, V. Myrvågnes, and K. Tang: Proceedings of the Thirteenth International Ferroalloys Congress. Efficient Technologies in Ferroalloy Industry, P. Dipner, Almaty, 2013, pp 467–78.

  11. M. Ksiazek, M. Tangstad, H. Dalaker and E. Ringdalen, Metallurgical and Materials Transactions E 2014, vol. 1, pp. 272-279.

    Google Scholar 

  12. K. Wiik: Kinetics of reactions between silica and carbon. (Norwegian University of Science and Technology, Trondheim, 1990).

    Google Scholar 

  13. S. F. Moustafa, M. B. Morsi and A. Alm El-Din, Canadian Metallurgical Quarterly 1997, vol. 36, pp. 355-358.

    Article  Google Scholar 

  14. G. P. Wotzak and J. J. Biernacki, Journal of thermal analysis 1989, vol. 35, pp. 1651-1667.

    Article  Google Scholar 

  15. A. W. Weimer, K. J. Nilsen, G. A. Cochran, and R. P. Roach, AIChE Journal 1993, vol. 39, pp. 493–503.

    Article  Google Scholar 

  16. X. Li, G. Zhang, K. Tang, O. Ostrovski and R. Tronstad, Metallurgical and Materials Transactions B 2015, vol. 46, pp. 1343-1352.

    Article  Google Scholar 

  17. Y. Sakaguchi, M. Ishizaki, T. Kawahara, M. Fukai, M. Yoshiyagawa, and F. Aratani, ISIJ International 1992, vol. 32, pp. 643-649.

    Article  Google Scholar 

  18. E. Dal Martello, G. Tranell, S. Gaal, O. S. Raaness, K. Tang and L. Arnberg, Metallurgical and Materials Transactions B 2011, vol. 42, pp. 939-950.

    Article  Google Scholar 

  19. R. Koc and S.V Cattamanchi, Journal of Materials Science 1998, vol. 33, pp. 2537-2549.

    Article  Google Scholar 

  20. W. Seo and K. Koumoto, Journal of the American Ceramic Society 2000, vol. 83, pp. 2584–2592.

    Article  Google Scholar 

  21. M. Saito and S. Nagashima, A. Kato, Journal of Materials Science Letters 1992, vol. 11, pp. 373-376.

    Article  Google Scholar 

  22. Y. Lin and C. Tsang, Ceramics International 2003, vol. 29, pp. 69–75.

    Article  Google Scholar 

  23. J. Yao, H. Wang, X. Zhang, W. Zhu, J. Wei, and Y. Cheng, The Journal of Physical Chemistry C 2007, vol. 111, pp. 636–641.

    Article  Google Scholar 

  24. H. Lindgaard: High Temperature Decomposition of Methane on Quartz Pellets. (Norwegian University of Science and Technology, Trondheim, Norway, 2015).

    Google Scholar 

  25. F. Li and M. Tangstad, In 2016 Annual Meeting of The Minerals, Metals & Materials Society, (John Wiley & Sons, Inc.: Nashville, USA, 2016).

    Google Scholar 

  26. F. Li, M. Tangstad, and I. Solheim, In The Fourteenth International Ferroalloys Congress(Infacon XIV) Energy efficiency and environmental friendliness are the future of the global Ferroalloy industry, Kiev, 2015.

Download references

Acknowledgments

The authors acknowledge Elkem and Norwegian Research Council for the financial report through the project “Silicon Production with use of Natural Gas (235123).”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Merete Tangstad.

Additional information

Manuscript submitted April 14, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, F., Tangstad, M. Carbothermal Reduction of Quartz with Carbon from Natural Gas. Metall Mater Trans B 48, 853–869 (2017). https://doi.org/10.1007/s11663-016-0887-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-016-0887-3

Keywords

Navigation