Skip to main content
Log in

Relationship Between Sulfide Capacity and Structure of MnO-SiO2-Al2O3-Ce2O3 System

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Sulfide capacity of the MnO-SiO2-Al2O3-Ce2O3 system was measured at 1873 K (1600 °C), and the structural analysis was carried out using micro-Raman spectroscopy to understand the role of Ce2O3 in the sulfur dissolution behavior. Sulfide capacity of the basic melts (MnO/SiO2 = 2.2(±0.14)) decreased with increasing content of Ce2O3 to approx. 4 mol pct, beyond which it increased. Sulfide capacity continuously decreased in the less basic system (MnO/SiO2 = 1.0(±0.15)), whereas it was hardly affected by Ce2O3 in the relatively acidic composition (MnO/SiO2 = 0.3(±0.05)). There was a significant increase in the intensity of Raman band at 600 cm−1 by Ce2O3 addition in high MnO/SiO2 (=2.2) system, which originated from the transition from [(Al,Mn0.5)O4]-tetrahedron to [(Al,Ce)O6]-octahedron due to strong attraction between Al2O3 and Ce2O3. Combining thermodynamic and structural information, the effect of Ce2O3 on the sulfide capacity of Mn-aluminosilicate melts can be explained by the following factors: (1) Activity of MnO in the melts decreased by addition of Ce2O3; (2) Free oxygen was consumed in the structure modification from [(Al,Mn0.5)O4] to [(Al,Ce)O6] unit by addition of Ce2O3; and 3) When the Ce3+ content was greater than critical value (approx. 4 mol pct) in high MnO/SiO2 (=2.54) melts, excess Ce3+ and Mn2+ ions competitively reacted with S2− ions, resulting in an increase of sulfide capacity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. S. T. Kim, S. H. Jeon, I. S. Lee and Y. S. Park: Corros. Sci., 2010, vol. 52, pp. 1897-1904.

    Article  Google Scholar 

  2. S. H. Jeon, S. T. Kim, I. S. Lee and Y. S. Park: Corros. Sci., 2010, vol. 52, pp. 3537-47.

    Article  Google Scholar 

  3. S. K. Kwon, Y. M. Kong and J. H. Park: Met. Mater. Int., 2014, vol. 20, pp. 959-66.

    Article  Google Scholar 

  4. S. K. Kwon, J. S. Park and J. H. Park: ISIJ Int., 2015, vol. 55, pp. 2589-96.

    Article  Google Scholar 

  5. R. A. Sharma and F. D. Richardson: Trans. Metall. Soc. AIME, 1965, vol. 233, pp. 1586-92.

    Google Scholar 

  6. M. M. Nzotta: Scand. J. Metall., 1997, vol. 26, pp. 169-77.

    Google Scholar 

  7. Y. B. Kang and A. D. Pelton: Metall. Mater. Trans. B, 2009, vol. 40B, pp. 979-94.

    Article  Google Scholar 

  8. D. H. Woo, Y. B. Kang and H. G. Lee: Metall. Mater. Trans. B, 2002, vol. 33B, pp. 915-20.

    Article  Google Scholar 

  9. H. Ohta and H. Suito: Metall. Mater. Trans. B, 1996, vol. 27B, pp. 263-70.

    Article  Google Scholar 

  10. T. Fujisawa and H. Sakao: Tetsu-to-Hagane, 1977, vol. 63, pp. 1504-11.

    Google Scholar 

  11. N. M. Anacleto, H. G. Lee and P. C. Hayes: ISIJ Int., 1993, vol. 33, pp. 549-55.

    Article  Google Scholar 

  12. G. H. Park, Y. B. Kang and J. H. Park: ISIJ Int., 2011, vol. 51, pp. 1375-82.

    Article  Google Scholar 

  13. J. H. Park and G. H. Park: ISIJ Int., 2012, vol. 52, pp. 764-69.

    Article  Google Scholar 

  14. J. H. Park: Steel Res. Int., 2013, vol. 84, pp. 664-69.

    Article  Google Scholar 

  15. J. H. Park: J. Non-Cryst. Solids, 2012, vol. 358, pp. 3096-3102.

    Article  Google Scholar 

  16. J. H. Park, K. Y. Ko and T. S. Kim: Metall. Mater. Trans. B, 2015, vol. 46B, pp. 741-48.

    Article  Google Scholar 

  17. J. H. Park: ISIJ Int., 2012, vol. 52, pp. 1627-36.

    Article  Google Scholar 

  18. E. J. Preisler, O. J. Marsh, R. A. Beach and T. C. McGill: J. Vac. Sci. Technol. B, 2001, vol. 19, pp. 1611-18.

    Article  Google Scholar 

  19. J.A-Rivera, D.A.R. Carvajal, M. del C. A-Enriquez, M.B.M-Martinez, E. Alvarez, R. L-Morales, G. C. Diaz, A. de Leon, and M. E. Zayas: J. Am. Ceram. Soc., 2014, vol. 97, pp. 3494–500.

  20. M. Sekita, A. Fujimori, A. Makishima, T. Shimohira: J. Non-Cryst. Solids, 1985, vol. 76, pp. 399-407.

    Article  Google Scholar 

  21. A. Makishima, M. Kobayashi, and T. Shimohira: Commun. Am. Ceram. Soc., 1982, vol. 65, C-210-C-211.

  22. C. J. B. Finchan and F. D. Richardson: Proc. Roy. Soc. London A, 1954, vol. 223, pp. 40-62.

    Article  Google Scholar 

  23. R. G. Ward: An Introduction to the Physical Chemistry of Iron and Steelmaking, Edward Arnold, 1962.

  24. Y. B. Kang and J. H. Park: Metall. Mater. Trans. B, 2011, vol. 42B, pp. 1211-17.

    Article  Google Scholar 

  25. A. Vahed and D. A. R. Kay: Metall. Trans. B, 1976, vol. 7B, pp. 375-83.

    Article  Google Scholar 

  26. S. L. Lin, C. S. Hwang and J. F. Lee: Jpn. J. Appl. Phys., 1996, vol. 35, pp. 3975-83.

    Article  Google Scholar 

  27. P. Wu and A. D. Pelton: J. Alloy. Compd., 1992, vol. 179, pp. 259-87.

    Article  Google Scholar 

  28. S. Ueda, K. Morita and N. Sano: ISIJ Int., 1998, vol. 38, pp. 1292-96.

    Article  Google Scholar 

  29. R. Kitano, M. Ishii and K. Morita: Proc. of 6 th Asia Steel Int. Conf., 2015, pp. 40-41.

  30. J. H. Park, D. J. Min and H. S. Song: Metall. Mater. Trans. B, 2004, vol. 35B, 269-275.

    Article  Google Scholar 

  31. B. O. Mysen, D. Virgo and C. M. Scarfe: Am. Mineral., 1980, vol. 65, pp. 690-710.

    Google Scholar 

  32. J. H. Park: Met. Mater. Int., 2013, vol. 19, pp. 557-84.

    Google Scholar 

  33. K. Chah, B. Boizot, B. Reynard, D. Ghaleb and G. Petite: Nucl. Instrum. Meth. B, 2002, vol. 191, pp. 337-41.

    Article  Google Scholar 

  34. F. Seifert, B. O. Mysen and D. Virgo: Am. Mineral., 1982, vol. 67, pp. 696-718.

    Google Scholar 

  35. P. McMillan, B. Piriou and A. Navrotsky: Geochim.Cosmochim. Acta, 1982, vol. 46, pp. 2021-37.

    Article  Google Scholar 

  36. M. Okuno, N. Zotov, M. Schmucker and H. Schneider: J. Non-Cryst. Solids, 2005, vol. 351, pp. 1032-38.

    Article  Google Scholar 

  37. T.S. Kim and J.H. Park: ISIJ Int., 2014, vol. 54, pp. 2031-38.

    Article  Google Scholar 

  38. J.H. Park, D.J. Min and H.S. Song: ISIJ Int., 2002, vol. 42, pp. 38-43.

    Article  Google Scholar 

  39. B. O. Mysen and P. Richet: Silicate Glasses and Melts: Properties and Structure, Elsevier, Amsterdam, Netherlands, 2005.

    Google Scholar 

Download references

Acknowledgments

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (Grant Number NRF-2012R1A1A2041774). Furthermore, the authors express the appreciation to Professor KAZUKI MORITA, The University of Tokyo, Japan, for a fruitful discussion in regard of the interaction between Ce2O3 and Al2O3 in oxide melts.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joo Hyun Park.

Additional information

Manuscript submitted July 28, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jeong, S.J., Kim, T.S. & Park, J.H. Relationship Between Sulfide Capacity and Structure of MnO-SiO2-Al2O3-Ce2O3 System. Metall Mater Trans B 48, 545–553 (2017). https://doi.org/10.1007/s11663-016-0828-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-016-0828-1

Keywords

Navigation