Skip to main content
Log in

Solid Oxide Membrane (SOM) Process for Facile Electrosynthesis of Metal Carbides and Composites

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Metal carbides (MCs) and composites including TiC, SiC, TaC, ZrC, NbC, Ti5Si3/TiC, and Nb/Nb5Si3 have been directly electrosynthesized from their stoichiometric metal oxides/carbon (MOs/C) mixture precursors by an innovative solid oxide membrane (SOM)-assisted electrochemical process. MOs/C mixture powders including TiO2/C, SiO2/C, Ta2O5/C, ZrO2/C, Nb2O5/C, TiO2/SiO2/C, Nb2O5/SiO2 were pressed to form porous pellets and then served as cathode precursors. A SOM-based anode, made from yttria-stabilized zirconia (YSZ)-based membrane, was used to control the electroreduction process. The SOM electrochemical process was performed at 1273 K (1000 °C) and 3.5 to 4.0 V in molten CaCl2. The oxygen component contained in the MOs/C precursors was gradually removed during electroreduction process, and thus, MOs/C can be directly converted into MCs and composites at the cathode. The reaction mechanism of the electroreduction process and the characteristics of the obtained MCs and composites products were systematically investigated. The results show that the electrosynthesis process typically involves compounding, electroreduction, dissolution-electrodeposition, and in situ carbonization processes. The products can be predesigned and controlled to form micro/nanostructured MCs and composites. Multicomponent multilayer composites (MMCs) have also been tried to electrosynthesize in this work. It is suggested that the SOM-assisted electroreduction process has great potential to be used for the facile and green synthesis of various MCs and composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. A.M. Nartowski, I.P. Parkin, A.J. Craven, and M. MacKenzie: Adv. Mater., 1998, vol. 10, pp. 805–08.

    Article  Google Scholar 

  2. H. Dai, E.W. Wong, Y.Z. Lu, S. Fan, and C.M. Lieber: Nature, 1995, vol. 375, pp. 769–72.

    Article  Google Scholar 

  3. M. Lei, H.Z. Zhao, H. Yang, B. Song, and W.H. Tang: J. Eur. Ceram. Soc., 2008, vol. 28, pp. 1671–77.

    Article  Google Scholar 

  4. A.M. Nartowski, I.P. Parkin, M. Mackenzie, and A.J. Craven: J. Mater. Chem., 2001, vol. 11, pp. 3116–19.

    Article  Google Scholar 

  5. W.F. Chen, J.T. Muckerman, and E. Fujita: Chem. Commun., 2013, vol. 49, pp. 8896–09.

    Article  Google Scholar 

  6. D.V. Esposito, S.T. Hunt, Y.C. Kimmel, and J.G. Chen: J. Am. Chem. Soc., 2012, vol. 134, pp. 3025–33.

    Article  Google Scholar 

  7. R. Wu, K. Zhou, C.Y. Yue, J. Wei, and Y. Pan: Prog. Mater. Sci., 2015, vol. 72, pp. 1–60.

    Article  Google Scholar 

  8. L. López-de-la-Torre, B. Winkler, J. Schreuer, K. Knorr, and M. Avalos-Borja: Solid State Commun., 2005, vol. 134, pp. 245–50.

    Article  Google Scholar 

  9. R.A. Morris, B. Wang, L.E. Matson, and G.B. Thompson: Acta Mater., 2012, vol. 60, pp. 139–48.

    Article  Google Scholar 

  10. M. Dasog, L.F. Smith, T.K. Purkait, and J.G.C. Veinot: Chem. Commun., 2013, vol. 49, pp. 7004–06.

    Article  Google Scholar 

  11. C.R. Rambo, J. Cao, O. Rusina, and H. Sieber: Carbon, 2005, vol. 43, pp. 1174–83.

    Article  Google Scholar 

  12. Q. Song, Q. Xu, J. Meng, T. Lou, Z. Ning, Y. Qi, and K. Yu: J. Alloys Compd., 2015, vol. 647, pp. 245–51.

    Article  Google Scholar 

  13. D.E. Grove, U. Gupta, and A.W. Castleman Jr: Langmuir, 2010, vol. 26, pp. 16517–21.

    Article  Google Scholar 

  14. J. Li, D. Jiang, and S. Tan: J. Eur. Ceram. Soc., 2002, vol. 22, pp. 551–58.

    Article  Google Scholar 

  15. D. Gu, W. Meiners, C. Li, and Y. Shen: Mater. Sci. Eng. A, 2010, vol. 527A, pp. 6340–45.

    Article  Google Scholar 

  16. K. Kishida, M. Fujiwara, H. Adachi, K. Tanaka, and H. Inui: Acta Mater., 2010, vol. 58, pp. 846–57.

    Article  Google Scholar 

  17. H. Jiao, Q. Wang, J. Ge, H. Sun, and S. Jiao: J. Alloys Compd., 2014, vol. 582, pp. 146–50.

    Article  Google Scholar 

  18. X. Zou, X. Lu, Z. Zhou, and C. Li: Electrochem. Commun., 2012, vol. 21, pp. 9–13.

    Article  Google Scholar 

  19. M. Estruga, S.N. Girard, Q. Ding, L. Chen, X. Li, and S. Jin: Chem. Commun., 2014, vol. 50, pp. 1454–57.

    Article  Google Scholar 

  20. G.Z. Chen, D.J. Fray, and T.W. Farthing: Nature, 2000, vol. 407, pp. 361–64.

    Article  Google Scholar 

  21. T. Nohira, K. Yasuda, and Y. Ito: Nat. Mater., 2003, vol. 2, pp. 397–401.

    Article  Google Scholar 

  22. W. Xiao and D. Wang: Chem. Soc. Rev., 2014, vol. 43, pp. 3215–28.

    Article  Google Scholar 

  23. A.M. Abdelkader, K. Tripuraneni Kilby, A. Cox, and D.J. Fray: Chem. Rev., 2013, vol. 113, pp. 2863–86.

    Article  Google Scholar 

  24. D.T.L. Alexander, C. Schwandt, and D.J. Fray: Electrochim. Acta, 2011, vol. 56, pp. 3286–95.

    Article  Google Scholar 

  25. C. Schwandt, D.T.L. Alexander, and D.J. Fray: Electrochim. Acta, 2009, vol. 54, pp. 3819–29.

    Article  Google Scholar 

  26. K. Jiang, X. Hu, M. Ma, D. Wang, G. Qiu, X. Jin, and G.Z. Chen: Angew. Chem. Int. Ed., 2006, vol. 45, pp. 428–32.

    Article  Google Scholar 

  27. W. Li, X. Jin, F. Huang, and G.Z. Chen: Angew. Chem. Int. Ed., 2010, vol. 49, pp. 3203–06.

    Article  Google Scholar 

  28. D. Hu, W. Xiao, and G.Z. Chen: Metall. Mater. Trans. B, 2013, vol. 44B, pp. 272–82.

    Article  Google Scholar 

  29. G.Z. Chen, E. Gordo, and D.J. Fray: Metall. Mater. Trans. B, 2004, vol. 35B, pp. 223.

    Article  Google Scholar 

  30. W. Xiao, X. Wang, H. Yin, H. Zhu, X. Mao, and D. Wang: RSC. Adv., 2012, vol. 2, pp. 7588–93.

    Article  Google Scholar 

  31. W. Xiao, X. Jin, and G.Z. Chen: J. Mater. Chem. A, 2013, vol. 1, pp. 10243–250.

    Article  Google Scholar 

  32. A.M. Abdelkader and D.J. Fray: J. Eur. Ceram. Soc., 2012, vol. 32, pp. 4481–87.

    Article  Google Scholar 

  33. L. Sun, Q. Song, Q. Xu, Z. Ning, X. Lu, and D. Fray: New J. Chem., 2015, vol. 39, pp. 4391–97.

    Article  Google Scholar 

  34. Q. Song, Q. Xu, R. Ding, J. Meng, Z. Ning, T. Lou, Y. Qi, and K. Yu: J. Electrochem. Soc., 2016, vol. 163, pp. E49–53.

    Article  Google Scholar 

  35. U.B. Pal, D.E. Woolley, and G.B. Kenney: JOM, 2001, vol. 53, pp. 32–35.

    Article  Google Scholar 

  36. A. Krishnan, X.G. Lu, and U.B. Pal: Metall. Mater. Trans. B, 2005, vol. 36B, pp. 463–73.

    Article  Google Scholar 

  37. X. Guan, U.B. Pal, S. Gopalan, and A.C. Powell: J. Electrochem. Soc., 2013, vol. 160, pp. F1179–86.

    Article  Google Scholar 

  38. X. Guan, P.A. Zink, U.B. Pal, and A.C. Powell: Metall. Mater. Trans. B, 2013, vol. 44B, pp. 261–71.

    Article  Google Scholar 

  39. E.S. Gratz, X. Guan, J.D. Milshtein, U.B. Pal, and A.C. Powell: Metall. Mater. Trans. B, 2014, vol. 45B, pp. 1325–36.

    Article  Google Scholar 

  40. C. Chen, X. Yang, J. Li, X. Lu, and S. Yang: Metall. Mater. Trans. B, 2016, vol. 47, pp. 1727–35.

    Article  Google Scholar 

  41. X. Lu, X. Zou, C. Li, Q. Zhong, W. Ding, and Z. Zhou: Metall. Mater. Trans. B, 2012, vol. 43B, pp. 503–12.

    Article  Google Scholar 

  42. X. Zou, X. Lu, Z. Zhou, W. Xiao, Q. Zhong, C. Li, and W. Ding: J. Mater. Chem. A, 2014, vol. 2, pp. 7421–30.

    Article  Google Scholar 

  43. X. Zou, X. Lu, Z. Zhou, C. Li, and W. Ding: Electrochim. Acta, 2011, vol. 56, pp. 8430–37.

    Article  Google Scholar 

  44. X. Zou, X. Lu, C. Li, and Z. Zhou: Electrochim. Acta, 2010, vol. 55, pp. 5173–79.

    Article  Google Scholar 

  45. X. Zou, K. Zheng, X. Lu, Q. Xu, and Z. Zhou: Faraday Discuss., 2016, vol. 190, pp. 53–69.

    Article  Google Scholar 

  46. A. Mukherjee, N. Campagnol, J.V. Dyck, J. Fransaer, and B. Blanpain: J. Am. Ceram. Soc., 2015, vol. 98, pp. 972–81.

    Article  Google Scholar 

  47. D. Wang, X. Jin, and G.Z. Chen: Annu. Rep. Prog. Chem., Sect. C, 2008, vol. 104, pp. 189–234.

  48. J. Mohanty, K.G. Mishra, R.K. Paramguru, and B.K. Mishra: Metall. Mater. Trans. B, 2012, vol. 43B, pp. 513–18.

    Article  Google Scholar 

  49. Y. Deng, D. Wang, W. Xiao, X. Jin, X. Hu, and G.Z. Chen: J. Phys. Chem. B, 2005, vol. 109, pp. 14043–51.

    Article  Google Scholar 

  50. W. Xiao, X. Jin, Y. Deng, D. Wang, X. Hu, and G.Z. Chen: ChemPhysChem., 2006, vol. 7, pp. 1750–58.

    Article  Google Scholar 

  51. R.O. Suzuki, M. Aizawa, and K. Ono. J. Alloys Compd., 1999, vol. 288, pp. 173–82.

    Article  Google Scholar 

  52. C. Giordano and M. Antonietti: Nano Today, 2011, vol. 6, pp. 366–80.

    Article  Google Scholar 

  53. N.G. Wright, A.B. Horsfall, and K. Vassilevski: Mater. Today, 2008, vol. 11, pp. 16–21.

    Article  Google Scholar 

  54. D.H. van Dorp, N. Hijnen, M.D. Vece, and J.J. Kelly: Angew. Chem. Int. Ed., 2009, vol. 48, pp. 6085–88.

    Article  Google Scholar 

  55. X. Jin, P. Gao, D. Wang, X. Hu, and G.Z. Chen: Angew. Chem. Int. Ed., 2004, vol. 43, pp. 733–36.

    Article  Google Scholar 

  56. J. Zhao, J. Li, P. Ying, W. Zhang, L. Meng, and C. Li: Chem. Commun., 2013, vol. 49, pp. 4477–79.

    Article  Google Scholar 

  57. J. Yang, S. Lu, S. Kan, X. Zhang, and J. Du: Chem. Commun., 2009, pp. 3273–75.

  58. K. Yasuda, T. Nohira, R. Hagiwara, and Y.H. Ogata: J. Electrochem. Soc., 2007, vol. 154, pp. E95–01.

    Article  Google Scholar 

  59. K. Yasuda, T. Nohira, Y.H. Ogata, and Y. Ito: J. Electrochem. Soc., 2005, vol. 152, pp. D208–12.

    Article  Google Scholar 

  60. X. Yang, K. Yasuda, T. Nohira, R. Hagiwara, and T. Homma: Metall. Mater. Trans. B, 2014, vol. 45B, pp. 1337–44.

    Article  Google Scholar 

  61. X. Yang, K. Yasuda, T. Nohira, R. Hagiwara, and T. Homma: Matell. Mater. Trans. B, 2016, vol. 47B, pp. 788–97.

    Article  Google Scholar 

  62. X. Zou, S. Gu, X. Lu, X. Xie, C. Lu, Z. Zhou, and W. Ding: Metall. Mater. Trans. B, 2015, vol. 46B, pp. 1262–74.

    Article  Google Scholar 

  63. Q.S. Song, Q. Xu, X. Kang, J.H. Du, and Z.P. Xi: J. Alloys Compd., 2010, vol. 490, pp. 241–46.

    Article  Google Scholar 

  64. A.M. Abdelkader, A. Daher, R.A. Abdelkareem, and E. El-Kashif: Metall. Mater. Trans. B, 2007, vol. 38B, pp. 35–44.

    Article  Google Scholar 

  65. K.S. Mohandas and D.J. Fray: Metall. Mater. Trans. B, 2009, vol. 40B, pp. 685–99.

    Article  Google Scholar 

  66. T. Wu, W. Xiao, X. Jin, C. Liu, D. Wang, and G.Z. Chen: Phys. Chem. Chem. Phys., 2008, vol. 10, pp. 1809–18.

    Article  Google Scholar 

  67. J. Li, D. Jiang, and S. Tan: J. Eur. Ceram. Soc., 2002, vol. 22, pp. 551–58.

    Article  Google Scholar 

  68. W. Chen, S. Wang, J. Ge, S. Jiao, and H. Zhu: Intermetallics, 2012, vol. 25, pp. 66–69.

    Article  Google Scholar 

  69. G.Z. Chen and D.J. Fray: Trans. Inst. Min. Metall. C., 2006, vol. 115, pp. 49–54.

    Google Scholar 

Download references

Acknowledgments

The authors thank the National Natural Science Foundation of China (Nos. 51304132, 51225401, and 51574164), the National Basic Research Program of China (No. 2014CB643403), the Science and Technology Commissions of Shanghai Municipality (No. 14JC1491400) and the Young Teacher Training Program of Shanghai Municipal Education Commission for financial support. The authors also thank Professor George Z. Chen (University of Nottingham, UK), Professor Kathie McGregor (CSIRO, Australia), and Professor Toru Okabe (University of Tokyo, Japan) for the fruitful discussions during the Liquid Salt for Energy and Materials: Faraday Discussion, 11–13 May 2016, Ningbo, China.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xingli Zou or Xionggang Lu.

Additional information

Manuscript submitted June 21, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zou, X., Chen, C., Lu, X. et al. Solid Oxide Membrane (SOM) Process for Facile Electrosynthesis of Metal Carbides and Composites. Metall Mater Trans B 48, 664–677 (2017). https://doi.org/10.1007/s11663-016-0817-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-016-0817-4

Keywords

Navigation