Skip to main content
Log in

Combustion Methods for Measuring Low Levels of Carbon in Nickel, Copper, Silver, and Gold

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Laboratory studies and a literature search indicate that there is no definitive procedure for combustion analysis of low levels of carbon in Cu, Ag, and Au. Literature data disagree by one to two orders of magnitude for solubility of carbon in Cu, near the melting point. Data for Ag and Au are very limited. This study develops a procedure for combustion analysis of ppm levels of carbon in high-purity Ni, Cu, Ag, and Au samples. For comparison, each sample is measured with glow discharge mass spectrometry. The study begins with Ni, as the procedure for this material is fairly well established. For the other metals, an optimum accelerator and sample-to-accelerate weight ratio is developed. Fine particle copper is a suitable accelerator for Cu and Ag samples, and also shows potential for Au samples

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. H.C. McEvoy, G. Machin, R. Friedrich, J. Hartmann, J. Hollandt: in Temperature: Its Measurement and Control in Science and Industry, vol. 7, D. Ripple, ed., AIP Conference Proceedings, Chicago, 2003, pp 909–14.

  2. G. Bongiovanni, L. Crovini, and P. Marcarino: Metrologia, 1975, 11, 125-132.

    Article  Google Scholar 

  3. M. Fahr and S. Rudtsch: Metrologia, 2009, 46(5), 423-438.

    Article  Google Scholar 

  4. D. Takagi, Y. Homma, H. Hibino, S. Suzuki, and Y. Kobayashi: Nano Lett., 2006, 6, 2642–2645.

    Article  Google Scholar 

  5. Y. Homma: Catalysts, 2014, 4, 38-48.

    Article  Google Scholar 

  6. E. Ricci and R. Novakovic: Gold Bulletin, 2001, 34(2), 41-49.

    Article  Google Scholar 

  7. Netzsch, Simultaneous Thermal Analysis Instrument STA 409 C, DTA 409 Instruction Manual, Netzsch-Gerätebau GmbH, Selb.

  8. H. Okamoto and T. B. Massalski: Bull. Alloy Phase Diagr. 1984, 5, 378-379.

    Article  Google Scholar 

  9. ASTM Standard Test Method, E1019-11. ASTM International, Philadelphia.

  10. L. L. Oden and N. A. Gokcen: Metall. Mat. Trans. A, 1997. 28A(12), 2453-2458.

    Article  Google Scholar 

  11. W. W. Dunn, R. B. McLellan, and W. A. Oates: Trans. Met. Soc. AIME, 1968, 242(10), 2129-2132.

    Google Scholar 

  12. E. T. Turkdogan and R. A. Hancock, S. I. Herlitz: JISI, 1956, 182, 274-274.

    Google Scholar 

  13. J. J. Lander, H. E. Kern, and A. L. Beach: J. Appl. Phys., 1952, 23(12), 1305-1309.

    Article  Google Scholar 

  14. M. E. Nicholson: Trans. Met. Soc. AIME, 1962, 224, 533-535.

    Google Scholar 

  15. K. K. Rao and M. E. Nicholson: Trans. Met. Soc. AIME, 1963, 227, 1029-30.

    Google Scholar 

  16. M. Hasebe, H. Ohtani, and T. Nishizawa: Metall. Trans. A, 1985,16A(5), 913-921.

    Article  Google Scholar 

  17. O. Ruff and B. Bergdahl: Z. Anorg. Allgem. Chem., 1919, 106, 76-94.

    Article  Google Scholar 

  18. M. B. Bever and C. Floe: Trans. AIME, 1946, 166, 128-141.

    Google Scholar 

  19. J.R. Anderson: Solubility of Carbon in Molten Copper-Manganese and Copper-Nickel Alloys, MS Thesis, MIT, Cambridge, MA, 1946.

  20. J. R. Anderson and M. B. Bever: Trans. AIME, 1947, 171, 119.

    Google Scholar 

  21. L.L. Oden, and N.A. Gokcen: Metall. Mater. Trans. B, 1992, 23(4), 453–458.

    Article  Google Scholar 

  22. L.S. Darken, R.W. Gurry, and M.B. Bever: Physical Chemistry of Metals, vol. 1. McGraw-Hill, New York, 1953.

    Google Scholar 

  23. K. Ono, E. Ichise, R. O. Suzuki, and T. Hidani: Steel Research, 1995, 66(9), 372-376.

    Google Scholar 

  24. B. Chicco and W. R. Thorpe: Metall. Mater. Trans. A, 1982 13A, 1293-1297.

    Article  Google Scholar 

  25. V.Y. Dashevskii, V.L. Kashin, and N.P. Lyakishev: in Proceedings of the INFACON 8, Beijing, 1998, pp. 294–96.

  26. J. Fenstad and J. K. Tuset: Z. Metallkunde, 2007, 98, 970-975.

    Google Scholar 

  27. J. Fenstad: Liquidus Relations and Thermochemistry Within the System Fe-Mn-C-O, Thesis, Dept. of Mater., NTNU, Norway, 2000.

  28. R. B. McLellan, Scripta Metall., 1969, 3(6), 389-391.

    Article  Google Scholar 

  29. G. Lopez and E. Mittemeijer: Scripta Mater., 2004, 51(1), 1-5.

    Article  Google Scholar 

  30. G. Mathieu, S. Guiot, and J. Cabane: Scripta Metall., 1973, 7, 421-426.

    Article  Google Scholar 

  31. I. Karakaya and W. T. Thompson: Bull. Alloy Phase Diagr., 1988, 9, 226.

    Article  Google Scholar 

  32. W. Hempel: Z. Angew. Chem., 1904, 17. 321-325.

    Article  Google Scholar 

  33. W. L. Harrington, R. K. Skogerboe, and G. H. Morrison, Anal. Chem., 1966. 38(7), 821-826.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nathan S. Jacobson.

Additional information

Manuscript submitted January 4, 2016.

Appendices

Appendix A

A trend analysis was proposed by Turkdogan[12] for carbon solubility in liquid metals. A carbon solubility (N c) is fitted to the equation:

$$ \log \left( {N_{\text{c}} } \right) = - A/T + B $$

Here A and B are constants and T is the absolute temperature. Since carbon is known to be lose electrons in austenite, Turkdogan et al. assume the solubility should be related to the ionization tendency of the metals. They found the first ionization potential of each metal did not provide a good correlation, but the second ionization potential did. Figure A1 shows a sequence of first row metals—Mn, Fe, Co, Ni, and Cu with the A and B constants correlated with the second ionization potentials. The “A” term was fitted with a third-order polynomial and the “B” term is fitted with a second-order polynomial.

Fig. A1
figure 15

Adapted from Ref. 12

Turkdogan’s trend analysis appears to confirm Bever’s data for Cu + C

Turkdogan used his own solubility data for Mn-C and Fe-C, and his trend seems to confirm Anderson and Bever’s[20] solubility data for pure Cu-C (Figures 3 and 4).

However, using Turkdogan’s method, but plotting more recent data for Mn-C, Fe-C and Ni-C, leads to a lower temperature coefficient for C-solubility in Cu, but a higher absolute C-solubility (shown in Figure A2).

Fig. A2
figure 16

Turkdogan’s innovative trend analysis, applied to data from Oden and Gokcen,[21] Dashevskii et al.,[25] and Fenstad.[26] The resulting estimate for Cu-C means that the C-solubility agree well with the wide composition extrapolation of Anderson and Bever’s alloy data,[20] shown in Figs. 3 and 4

Appendix B: Raw Combustion Analysis Data

Sample Name

Batch Number

Sample Mass (g)

ppmw C

CTsec

Date Time

Cu Shot

 Cu Shot + Cu Acc

K29J30

0.5517

5.68

61

12/10/2014 10:45

 Cu Shot + Cu Acc

K29J30

0.5801

5.43

61

12/10/2014 10:54

 Cu Shot + Cu Acc

K29J30

0.4194

6.54

61

12/10/2014 10:56

 Cu Acc

 

0.5

0.75

61

12/10/2014 11:11

 Cu Acc

 

0.5

0.62

61

12/10/2014 11:25

 Cu Acc

 

0.5

−0.9

61

12/10/2014 11:27

 Cu Acc

 

0.5

−0.18

61

12/10/2014 11:29

 Cu Shot + Cu Acc

K29J30

0.4609

6.45

66

2/3/2015 14:47

 Cu Shot + Cu Acc

K29J30

0.5024

6.5

66

2/3/2015 15:32

 Cu Acc

 

0.5

2.06

66

2/6/2015 11:21

 Cu Acc

 

0.5

3.57

66

2/6/2015 11:24

 Cu Shot + Cu Acc

K29J30

0.9041

6.86

66

2/3/2015 14:51

 Cu Shot + Cu Acc

K29J30

1.0286

5.77

66

2/3/2015 15:24

Cu Electrical Wire

 Cu Elect Wire+Cu Acc

 

0.4821

6.12

61

1/7/2015 11:18

 Cu Elect Wire+Cu Acc

 

0.4688

7.92

61

1/7/2015 11:25

 Cu Elect Wire+Cu Acc

 

0.4243

8.12

61

1/7/2015 11:30

 Cu Acc

 

0.5

−0.43

61

1/7/2015 11:49

 Cu Acc

 

0.5

0.02

61

1/7/2015 11:51

 Cu Acc

 

0.5

−0.62

61

1/7/2015 11:54

Ni Small Slug

 WSn

 

0.5

−0.12

61

1/22/2015 9:03

 WSn

 

0.5

−0.23

61

1/22/2015 9:08

 WSn

 

0.5

−0.5

61

1/22/2015 9:12

 WSn

 

0.5

−0.4

61

1/22/2015 9:03

 WSn

 

0.5

0.09

61

1/22/2015 9:06

 WSn

 

0.5

−0.51

61

1/22/2015 9:08

 Ni + WSn

D23L33

0.4283

30.05

81

1/28/2015 15:11

 Ni + WSn

D23L33

0.4297

29.48

81

1/28/2015 15:19

 Ni + WSn

D23L33

0.4287

30.04

81

1/28/2015 15:22

 WSn

 

0.5

0.72

81

1/28/2015 15:01

 WSn

 

0.5

−0.81

81

1/28/2015 15:03

 WSn

 

0.5

−0.98

81

1/28/2015 15:06

 Ni + WSn

D23L33

1.0724

29.89

81

2/3/2015 13:17

 Ni + WSn

D23L33

1.0724

31.59

81

2/3/2015 14:18

 Ni + WSn

D23L33

0.6449

30.23

81

2/3/2015 12:36

 WSn

 

1

0.39

66

2/6/2015 11:12

 WSn

 

1

0.56

66

2/6/2015 11:14

 Ni + WSn

19A007

0.4276

10.47

81

2/16/2015 15:55

 Ni + WSn

19A007

0.4262

8.45

81

2/16/2015 16:00

 Ni + WSn

19A007

0.6406

10.92

81

2/16/2015 16:03

 Ni + WSn

19A007

0.6384

10.87

81

2/16/2015 16:05

 Ni + WSn

19A007

1.0689

12.54

81

2/16/2015 16:10

 Ni + WSn

19A007

1.0651

11.02

81

2/16/2015 16:18

Ni Large Slug

 Ni + WSn

I06X023

0.4519

8.19

81

2/17/2015 14:08

 Ni + WSn

I06X023

0.9019

10.13

81

2/16/2015 16:24

 Ni + WSn

I06X023

0.9009

11.03

81

2/16/2015 16:27

 Ni + WSn

I06X023

0.9034

10.3

81

2/17/2015 14:34

 Ni + WSn

I06X023

1.3498

10.22

81

2/16/2015 16:33

 Ni + WSn

I06X023

1.357

9.89

81

2/16/2015 16:38

Sample Name

Batch Number

Mass(g)

ppm C

CTsec

Date Time

Ag Slug

 Ag + Cu Acc

K29J30

0.2286

2.37

66

2/26/2015 10:46

 Ag + Cu Acc

K29J30

0.2272

27.67

66

2/26/2015 10:49

 Ag + Cu Acc

K29J30

0.2286

2.82

66

2/26/2015 10:51

 Ag + Cu Acc

K29J30

0.4665

5.81

66

2/26/2015 10:56

 Ag + Cu Acc

K29J30

0.4557

5.15

66

2/26/2015 10:58

 Ag + Cu Acc

K29J30

0.4563

5.52

66

2/26/2015 11:10

 Ag + Cu Acc

K29J30

0.6876

4.21

66

2/26/2015 11:03

 Ag + Cu Acc

K29J30

0.6881

5.09

66

2/26/2015 11:05

 Ag + Cu Acc

K29J30

0.6904

5.04

66

2/26/2015 11:07

Au Drops

Cu Mass (g)

Sample Mass

ppmw C

CTsec

Au/Cu Weight Ratio

Au + Cu

1

0.2114

31.66

81

0.2114

Au + Cu

1

0.1967

29.81

81

0.1967

Au + Cu

1

0.3117

16.7

81

0.3117

Au + Cu

1

0.6029

7.79

81

0.6029

Au + 2Cu

2

0.6798

10.67

81

0.3399

Au + 5Cu

5

0.7179

27.92

81

0.14358

Au Wire Alfa S09A020

Cu Mass (g)

Sample Mass (g)

ppmw C

CTsec

Au/Cu Weight Ratio

Au + 2Cu

2

0.1804

−1.02

81

0.0902

Au + Cu

1

0.1909

3.63

81

0.1909

Au + Cu

1

0.309

5.36

81

0.309

Au + Cu

1

0.444

7.89

81

0.444

Au + Cu

1

0.4979

6.19

81

0.4979

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jacobson, N.S., Savadkouei, K., Morin, C. et al. Combustion Methods for Measuring Low Levels of Carbon in Nickel, Copper, Silver, and Gold. Metall Mater Trans B 47, 3533–3543 (2016). https://doi.org/10.1007/s11663-016-0803-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-016-0803-x

Keywords

Navigation