Skip to main content
Log in

Large Eddy Simulations of the Effects of EMBr and SEN Submergence Depth on Turbulent Flow in the Mold Region of a Steel Caster

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Transient turbulent flow in the mold region during continuous casting of steel is related to many quality problems, such as surface defects and slag entrainment. This work applies an efficient multi-GPU based code, CUFlow, to perform large eddy simulations (LES) of the turbulent flow in a domain that includes the slide gate, SEN, and mold region. The computations were first validated by comparing the predicted surface velocity with plant measurements. Then, seven LES simulations were conducted to study the effects of casting speed, electromagnetic braking (EMBr) field strength, and submerged entry nozzle (SEN) depth on the transient flow. The results show that EMBr has an important influence on flow inside the SEN, in addition to flow in the mold. With EMBr, an “M-shaped” flow profile is seen inside the SEN. The swirling flow behavior in the SEN and ports is more symmetrical at high casting speed and with higher EMBr strength. The position of the SEN ports relative to the peak magnetic field affects the EMBr performance. The results confirm and quantify how applying EMBr greatly lowers both the magnitude and turbulent variations of the surface velocity and level profile.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28

Similar content being viewed by others

References

  1. World Steel Association: World Steel in figures 2014, World Steel Association, 2014.

  2. Kouji Takatani, Ken Nakai, Norifumi Kasai, Tadao Watanabe, and Hidemasa Nakajima: ISIJ Int., 1989, vol. 29, pp. 1063–68.

    Article  Google Scholar 

  3. Deok-Soo Kim, Woo-Seung Kim, and Kee-Hyeon Cho: ISIJ Int., 2000, vol. 40, pp. 670–676.

    Article  Google Scholar 

  4. Kevin Cukierski and Brian G. Thomas: Metall. Mater. Trans. B, 2008, vol. 39, pp. 94–107.

    Article  Google Scholar 

  5. Haiqi Yu, Baofeng Wang, Huiqin Li, and Jianchao Li: J. Mater. Process. Technol., 2008, vol. 202, pp. 179–87.

    Article  Google Scholar 

  6. Yufeng Wang and Lifeng Zhang: Metall. Mater. Trans. B, 2011, vol. 42, pp. 1319–51.

    Article  Google Scholar 

  7. H. Harada, T. Toh, T. Ishii, K. Kaneko, and E. Takeuchi: ISIJ Int., 2001, vol. 41, pp. 1236–44.

    Article  Google Scholar 

  8. Xincheng Miao, Klaus Timmel, Dirk Lucas, Zhongmin Ren, Sven Eckert, and Gunter Gerbeth: Metall. Mater. Trans. B, 2012, vol. 43, pp. 954–972.

    Article  Google Scholar 

  9. Zhong-Dong Qian and Yu-Lin Wu: ISIJ Int., 2004, vol. 44, pp. 100–107.

    Article  Google Scholar 

  10. Yun-Seong Hwang, Pil-Ryung Cha, Ho-Seok Nam, Ki-Hyeon Moon, and Jong-Kyu Yoon: ISIJ Int., 1997, vol. 37, pp. 659–67.

    Article  Google Scholar 

  11. Ramnik Singh, Brian G. Thomas, and Surya P. Vanka: Metall. Mater. Trans. B, 2013, vol. 44, pp. 1201–21.

    Article  Google Scholar 

  12. R. Chaudhary, B. G. Thomas, and S. P. Vanka: Metall. Mater. Trans. B, 2012, vol. 43, pp. 532–53.

    Article  Google Scholar 

  13. Akira Idogawa, M. Sugizawa, Shuji Takeuchi, K. Sorimachi, and T. Fujii: Mater. Sci. Eng. A, 1993, vol. 173, pp. 293–97.

    Article  Google Scholar 

  14. Baokuan Li, Toshimitsu Okane, and Takateru Umeda: Metall. Mater. Trans. B, 2000, vol. 31, pp. 1491–1503.

    Article  Google Scholar 

  15. Yuji Miki and Shuji Takeuchi: ISIJ Int., 2003, vol. 43, pp. 1548–55.

    Article  Google Scholar 

  16. Ramnik Singh, Brian G. Thomas, and Surya P. Vanka: Metall. Mater. Trans. B, 2014, vol. 45, pp. 1098–1115.

    Article  Google Scholar 

  17. Seong-Mook Cho, Seon-Hyo Kim, and Brian G. Thomas: ISIJ Int., 2014, vol. 54, pp. 855–64.

    Article  Google Scholar 

  18. B. Thomas and Rajneesh Chaudhary: in 6th Int. Conf. Electromagn. Process. Mater. EPM, Electromagnetic Processing of Materials, Dresden, Germany, 2009, pp. 9–14.

  19. J.-E. Eriksson: US Patent US6938674 B2, Sep. 2005.

  20. Klaus Timmel, Sven Eckert, Gunter Gerbeth, Frank Stefani, and Thomas Wondrak: ISIJ Int., 2010, vol. 50, pp. 1134–41.

    Article  Google Scholar 

  21. Klaus Timmel, Sven Eckert, and Gunter Gerbeth: Metall. Mater. Trans. B, 2011, vol. 42, pp. 68–80.

    Article  Google Scholar 

  22. Rajneesh Chaudhary, C. Ji, Brian G. Thomas, and S. P. Vanka: Metall. Mater. Trans. B, 2011, vol. 42, pp. 987–1007.

    Article  Google Scholar 

  23. Pierre H. Dauby: Rev. Métallurgie, 2012, vol. 109, pp. 113–136.

    Article  Google Scholar 

  24. Fei Li, Engang Wang, Mingjie Feng, and Zhuang Li: ISIJ Int., 2015, vol. 55, pp. 814–820.

    Article  Google Scholar 

  25. Kai Jin, Brian G. Thomas, and Xiaoming Ruan: Metall. Mater. Trans. B, 2016, vol. 47, pp. 548–65.

    Article  Google Scholar 

  26. Q. Yuan: PhD Thesis, University of Illinois at Urbana-Champaign, 2004.

  27. R. Liu: PhD Thesis, University of Illinois at Urbana-Champaign, 2015.

  28. Hiromichi Kobayashi: Phys. Fluids, 2005, vol. 17, p. 45104.

    Article  Google Scholar 

  29. Hiromichi Kobayashi: Phys. Fluids, 2008, vol. 20, p. 15102.

    Article  Google Scholar 

  30. S.P. Vanka, A.F. Shinn, and K.C. Sahu: in ASME 2011 Int. Mech. Eng. Congr. Expo., American Society of Mechanical Engineers, 2011, pp. 429–37.

  31. A.F. Shinn: PhD Thesis, University of Illinois at Urbana–Champaign, 2011.

  32. R. Chaudhary: PhD Thesis, University of Illinois at Urbana–Champaign, 2011.

  33. P. Kumar, K. Jin, and S.P. Vanka: in Proc. 1st Therm. Fluids Eng. Summer Conf., American Society of Thermal and Fluids Engineers, New York City, August 9, pp. 1–17.

  34. S.P. Vanka: J. Fluids Eng., 2013, vol. 135, p. 61401.

    Article  Google Scholar 

  35. Kai Jin, S. Pratap Vanka, and Brian G. Thomas: J. Fluids Eng., 2015, vol. 137, p. 71104.

    Article  Google Scholar 

  36. K. Jin, S.P. Vanka, and R.K. Agarwal: in 52nd AIAA Aerosp. Sci. Meet., American Institute of Aeronautics and Astronautics Inc., 2014, pp. 1–16.

  37. P. Kumar and S. P. Vanka: Int. J. Multiph. Flow, 2015, vol. 77, pp. 32–47.

    Article  Google Scholar 

  38. P. Kumar, K. Jin, and S.P. Vanka: in Proc. 1st Therm. Fluids Eng. Summer Conf., American Society of Thermal and Fluids Engineers, New York City, August 9, pp. 1–15.

  39. K. Jin, S.P. Vanka, B.G. Thomas, and X.M. Ruan: in Proc. CFD Model. Simul. Mater. Process., The Minerals, Metals & Materials Society, Nashville, Tennessee, 2016, pp. 159–66.

  40. Shinichiro Yokoya, Shigeo Takagi, Shingo Ootani, Manabu Iguchi, Katsukiyo Marukawa, and Shigeta Hara: ISIJ Int., 2001, vol. 41, pp. 1208–14.

    Article  Google Scholar 

  41. Saul Garcia-Hernandez, Rodolfo D. Morales, José de Jesús Barreto, and Ken Morales-Higa: ISIJ Int., 2013, vol. 53, pp. 1794–1802.

    Article  Google Scholar 

  42. Shinichiro Yokoya, Shigeo Takagi, Manabu Iguchi, Katsukiyo Marukawa, and Shigeta Hara: ISIJ Int., 2001, vol. 41, pp. S47–51.

    Article  Google Scholar 

  43. R. Liu, J. Sengupta, D. Crosbie, S. Chung, M. Trinh, and B.G. Thomas: in Sens. Sampl. Simul. Process Control, Wiley, San Diego, 2011, pp. 51–58.

  44. Rui Liu, Brian G. Thomas, Joydeep Sengupta, Stephen D. Chung, and ManhKha Trinh: ISIJ Int., 2014, vol. 54, pp. 2314–23.

    Article  Google Scholar 

  45. Jun Kubota, Noriko Kubo, Toshio Ishii, Makoto Suzuki, Norichika Aramaki, and Ryuzo Nishimachi: NKK Tech. Rev., 2001, vol. 85, pp. 1–9.

    Google Scholar 

  46. Lifeng Zhang, Subo Yang, Kaike Cai, Jiying Li, Xiaoguang Wan, and Brian G. Thomas: Metall. Mater. Trans. B, 2007, vol. 38, pp. 63–83.

    Article  Google Scholar 

  47. K. Jin, B. G. Thomas, R. Liu, S. P. Vanka, and X. M. Ruan: IOP Conf. Ser. Mater. Sci. Eng., 2015, vol. 84, p. 12095.

    Article  Google Scholar 

  48. Brian G. Thomas, Quan Yuan, Sana Mahmood, Rui Liu, and Rajneesh Chaudhary: Metall. Mater. Trans. B, 2014, vol. 45, pp. 22–35.

    Article  Google Scholar 

  49. J. Kubota, K. Okimoto, A. Shirayama, and H. Mukarami: in 1991 Steelmak. Conf., 1991.

  50. J. Knoepke, M. Hubbard, J. Kelly, R. Kittridge, and J. Lucas: in Steelmak. Conf. Proc., Iron and Steel Society, Chicago, IL, 1994, pp. 381–88.

  51. Manabu Iguchi, Jin Yoshida, Tomoyuki Shimizu, and Yoshiteru Mizuno: ISIJ Int., 2000, vol. 40, pp. 685–91.

    Article  Google Scholar 

  52. R.J. Moreau: Magnetohydrodynamics, Springer Science & Business Media, Netherlands, 1990.

  53. R. Chaudhary, A. F. Shinn, S. P. Vanka, and Brian G. Thomas: Comput. Fluids, 2011, vol. 51, pp. 100–114.

    Article  Google Scholar 

  54. Lance C. Hibbeler and Brian G. Thomas: Iron Steel Technol., 2013, vol. 10, pp. 121–36.

    Google Scholar 

  55. R. Chaudhary, B.T. Rietow, and B.G. Thomas: in Incl. Clean Steels Mater. Sci. Technol. Conf. AISTTMS, AIST and TMS, Pittsburgh, PA, 2009, pp. 1090–1101.

Download references

Acknowledgments

The authors thank the financial supports from the National Science Foundation (Grant No. CMMI 11-30882) and the Continuous Casting Consortium, Univ. of Illinois at Urbana–Champaign. We also thank Baosteel, Shanghai, P. R. China for providing the measurements and corresponding casting conditions. This research is also part of the Blue Waters sustained-petascale computing project, which is supported by the National Science Foundation (awards OCI-0725070 and ACI-1238993) and the State of Illinois. Blue Waters is a joint effort of the University of Illinois at Urbana–Champaign and its National Center for Supercomputing Applications. The authors also thank NVIDIA Hardware Grant Program for providing the GPUs for an in-house workstation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian G. Thomas.

Additional information

Manuscript submitted July 1, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, K., Vanka, S.P. & Thomas, B.G. Large Eddy Simulations of the Effects of EMBr and SEN Submergence Depth on Turbulent Flow in the Mold Region of a Steel Caster. Metall Mater Trans B 48, 162–178 (2017). https://doi.org/10.1007/s11663-016-0801-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-016-0801-z

Keywords

Navigation