Skip to main content
Log in

Transient Two-Phase Flow in Slide-Gate Nozzle and Mold of Continuous Steel Slab Casting with and without Double-Ruler Electro-Magnetic Braking

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Transient mold flow could produce undesirable surface instabilities and slag entrainments, leading to the formation of defects during continuous slab casting of steel. In this work, two Large Eddy Simulations coupled with Discrete Phase Model are run, with and without MagnetoHydroDynamic model, to gain new insights into the surface variations of molten steel-argon gas flow with anisotropic turbulence in the slide-gate nozzle and the mold, with and without double-ruler Electro-Magnetic Braking (EMBr). The model calculations are validated with plant measurements, and applied to investigate the flow variations related to the slide gate on nozzle swirl, jet wobbling, and surface flow variations by quantifying the variations of velocity, horizontal angle, and vertical angle of the transient flow. Transient flow in the slide-gate nozzle bottom is almost always swirling, alternating chaotically between clockwise and counter-clockwise rotation. The clockwise swirl, caused by stronger flow down the same side of the nozzle as the open area near the Outside Radius side of the slide-gate middle plate, produces faster jet flow and higher velocity flow across the top surface of the mold. Counter-clockwise swirl produces slower jet and surface flow, but with more variations. The double-ruler EMBr decreases the asymmetry and duration of velocity variations during nozzle swirl flipping, resulting in less flow variations in the jet and across the surface in the mold.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. C. Ojeda, B.G. Thomas, J. Barco and J.L. Arana: Proc. of AISTech 2007, Assoc. Iron Steel Technology, Warrendale, PA, 2007, pp. 269–83

  2. J. Sengupta, C. Ojeda and B. G. Thomas: Int. J. Cast Metal. Res., 2009, vol. 22, pp. 8-14

    Article  Google Scholar 

  3. M. Iguchi, J. Yoshida, T. Shimizu, and Y. Mizuno: ISIJ Int., 2000, vol. 40, pp. 685-691

    Article  Google Scholar 

  4. L.C. Hibbeler, R. Liu, and B.G. Thomas: Proc. of 7th ECCC, Steel Institute VDEh, Germany, 2011, pp. 1–10

  5. R. Hagemann, R. Schwarze, H.P. Heller, and P.R. Scheller: Metall. Mater. Trans B, 2013, vol. 44B, pp. 80-90

    Article  Google Scholar 

  6. S-M. Cho, G-G. Lee, S.-H. Kim, R. Chaudhary, O.-D. Kwon, and B. Thomas: Proc. of TMS 2010, TMS, Warrendale, PA, USA, 2010, pp. 71–77

  7. S-M. Cho, S-H. Kim, R. Chaudhary, B. G. Thomas, H-J. Shin, W-R. Choi, S-K. Kim: Iron and Steel Technology, 2012, vol.9, pp. 85-95

    Google Scholar 

  8. H. Bai and B. G. Thomas: Metall. Mater. Trans. B, 2001, vol. 32B, pp. 269-284

    Article  Google Scholar 

  9. T. Shi: Master degree thesis, University of Illinois at Urbana-Champaign, 2001.

  10. H. Bai and B. G. Thomas: Metall. Mater. Trans. B, 2001, vol. 32B, pp. 269-284

    Article  Google Scholar 

  11. Y. Miki and S. Takeuchi: ISIJ Int., 2003, vol.43, pp. 1548-1555

    Article  Google Scholar 

  12. Z-Q. Liu, B-K. Li, M-F. Jiang, and F. Tsukihashi: ISIJ Int, 2013, vol. 53, pp. 484-492

    Article  Google Scholar 

  13. K. Takatani, K. Nakai, T. Watanabe, and H. Nakajima: ISIJ Int, 1989, vol. 29, pp. 1063-1068

    Article  Google Scholar 

  14. H. Harada, T. Toh, T. Ishii, K. Kaneko, and E. Takeuchi: ISIJ Int, 2001, vol. 41, pp. 1236-1244

    Article  Google Scholar 

  15. Z-D. Qian and Y-L. Wu: ISIJ Int, 2004, vol. 44, pp. 100-107

    Article  Google Scholar 

  16. K. Cukierski and B. G. Thomas: Metall. Mater. Trans. B, 2008, vol. 39B, pp. 94-107

    Article  Google Scholar 

  17. K. Timmel, S. Eckert, G. Gerbeth, F. Stefani, and T. Wondrak: ISIJ Int., 2010, vol. 50, pp. 1134-1141

    Article  Google Scholar 

  18. K. Timmel, S. Eckert, and G. Gerbeth: Metall. Mater. Trans. B, 2011, vol. 42B, pp. 68-80

    Article  Google Scholar 

  19. X. Miao, K. Timmel, D. Lucas, Z. Ren, S. Eckert, and G. Gerbeth: Metall. Mater. Trans. B, 2012, vol. 43B, pp. 954-972

    Article  Google Scholar 

  20. R. Chaudhary, B. G. Thomas, and S.P. Vanka: Metall. Mater. Trans. B, 2012, vol. 43B, pp. 532-553

    Article  Google Scholar 

  21. R. Singh, B.G. Thomas, and S.P. Vanka: Metall. Mater. Trans. B, 2013, vol. 44B, pp. 1201 – 1221

    Article  Google Scholar 

  22. R. Singh, B.G. Thomas, and S.P. Vanka: Metall. Mater. Trans. B, 2014, vol. 45B, pp. 1098 - 1115

    Article  Google Scholar 

  23. B. Li, T. Okane, and T. Umeda: Metall. Mater. Trans. B, 2000, vol. 31B, pp. 1491-1503

    Article  Google Scholar 

  24. B. Li, T. Okane, and T. Umeda: Metall. Mater. Trans. B, 2001, vol. 32B, pp. 1053-1066

    Article  Google Scholar 

  25. Y. Wang and L. Zhang: Metall. Mater. Trans. B, 2011, vol. 42B, pp. 1319-1351

    Article  Google Scholar 

  26. H. Yu and M. Zhu: ISIJ Int., 2008, vol. 48, pp. 584-591

    Article  Google Scholar 

  27. B. Li and F. Tsukihashi: ISIJ Int, 2003, vol. 43, pp. 923-931

    Article  Google Scholar 

  28. K. Moon, H. Shin, B. Kim, J. Chung, Y. Hwang, and J. Yoon: ISIJ Int, 1996, vol. 36, S201-203

    Article  Google Scholar 

  29. Y. Hwang, P. Cha, H. Nam, K. Moon, and J. Yoon: ISIJ Int, 1997, vol. 37, pp. 659-667

    Article  Google Scholar 

  30. S-M. Cho, H-J. Lee, S-H. Kim, R. Chaudhary, B. G. Thomas, D-H. Lee, Y-J. Kim, W-R. Choi, S-K. Kim, and H-S. Kim: Proc. Of. TMS 2011, TMS, Warrendale, PA, 2011, pp. 59–66

  31. S-M. Cho, S-H. Kim, B. G. Thomas: ISIJ Int, 2014, vol. 54, pp. 855-864

    Article  Google Scholar 

  32. S-M. Cho, S-H. Kim, B. G. Thomas: ISIJ Int, 2014, vol. 54, pp. 845-854

    Article  Google Scholar 

  33. ANSYS FLUENT 14.5-Theory Guide, ANSYS. Inc., Canonsburg, PA, USA, 2012

  34. Q. Yuan: Ph. D. Thesis, University of Illinois at Urbana-Champaign, 2004.

  35. Q. Yuan, B.G. Thomas, and S.P. Vanka, Metall. Mater. Trans. B, 2004, vol. 35B, pp. 685-702

    Article  Google Scholar 

  36. R. Liu: Ph. D. Thesis, University of Illinois at Urbana-Champaign, 2015

  37. F. Nicoud and F. Ducros: Flow, Turb. Comb., 1999, vol. 63(3), pp. 183–200

  38. ANSYS FLUENT 14.5-Magnetohydrodynamics (MHD) Module Manual, ANSYS. Inc., Canonburg, PA, USA, 2012

  39. H. Bai and B. G. Thomas: Metall. Mater. Trans. B, 2001, vol. 32B, pp. 1143-1159

    Article  Google Scholar 

  40. G.-G. Lee, B. G. Thomas, and S-H Kim: Met., Mater. Int., 2010, vol. 16, pp. 501

  41. D. E. Hershey, B. G. Thomas, and F. M. Najjar: Int. J. Numer. Metho. Fluids, 1993, vol. 17, pp. 23-47

    Article  Google Scholar 

  42. M. Schmidit and M. Byrne: Bethlehem Steel, Sparrows Point, Baltimore, private communication, 1992.

  43. D. Gupta and A.K. Lahiri: Metall. Mater. Trans. B, 1996, vol. 27B, pp. 757-764

    Article  Google Scholar 

  44. K. Jin, S. P. Vanka, B. G. Thomas, and X. M. Ruan: Proc. Of. TMS 2016, TMS, Nashville, 2016, pp. 159–66

Download references

Acknowledgments

The authors thank POSCO for their assistance in collecting plant data and financial support (Grant No. 4.0004977.01), and Mr. Yong-Jin Kim, POSCO for help with the plant measurements. Support from the National Science Foundation (Grant No. CMMI 11-30882) and the Continuous Casting Consortium, University of Illinois at Urbana-Champaign, USA is gratefully acknowledged. This research is also part of the Blue Waters sustained petascale computing project at the National Center for Supercomputing Applications at the University of Illinois, which is supported by the National Science Foundation (Awards OCI-0725070 and ACI-1238993) and the State of Illinois.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian G. Thomas.

Additional information

Manuscript submitted March 20, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cho, SM., Thomas, B.G. & Kim, SH. Transient Two-Phase Flow in Slide-Gate Nozzle and Mold of Continuous Steel Slab Casting with and without Double-Ruler Electro-Magnetic Braking. Metall Mater Trans B 47, 3080–3098 (2016). https://doi.org/10.1007/s11663-016-0752-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-016-0752-4

Keywords

Navigation