Skip to main content
Log in

Use of Thermodynamic Modeling for Selection of Electrolyte for Electrorefining of Magnesium from Aluminum Alloy Melts

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

With United States Department of Energy Advanced Research Project Agency funding, experimental proof-of-concept was demonstrated for RE-12TM electrorefining process of extraction of desired amount of Mg from recycled scrap secondary Al molten alloys. The key enabling technology for this process was the selection of the suitable electrolyte composition and operating temperature. The selection was made using the FactSage thermodynamic modeling software and the light metal, molten salt, and oxide thermodynamic databases. Modeling allowed prediction of the chemical equilibria, impurity contents in both anode and cathode products, and in the electrolyte. FactSage also provided data on the physical properties of the electrolyte and the molten metal phases including electrical conductivity and density of the molten phases. Further modeling permitted selection of electrode and cell construction materials chemically compatible with the combination of molten metals and the electrolyte.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  1. Adam J. Gesing, Subodh K. Das and Raouf O. Loutfy, JOM, Volume 68, Issue 2, Feb. 2016, pages 585-593

    Article  Google Scholar 

  2. A.J. Gesing, S. Das, and M. Gesing: US Patent Application US 2015/0225864 A1, 2015 (Phinix, LLC)

  3. Phinix, LLC - Trade Mark: RE12TM Recycled Magnesium, 2014

  4. Advanced Research Project Agency - Energy (ARPA-e) of the US Department of Energy - Funding Opportunity No. DE-FOA-0000882, March 20, 2013

  5. FactSage - http://www.crct.polymtl.ca/fact/

  6. P. Chartrand and A.D. Pelton, Met. & Mat. Trans., 32A, 1417-30 (2001).

    Article  Google Scholar 

  7. Elizabeth Renaud, Christian Robelin, Aïmen E. Gheribi, Patrice Chartrand, J. Chem. Thermodynamics 43 (2011) 1286–1298

    Article  Google Scholar 

  8. Ying Tanga, Yong Dua, Lijun Zhanga, Xiaoming Yuana, George Kaptay. Thermochimica Acta 527 (2012) 131–142

    Article  Google Scholar 

  9. H.C. Gaur, H.L. Jindal, Electrochimica Acta, Volume 15, Issue 7, July 1970, Pages 1127-1134

    Article  Google Scholar 

  10. H.C. Gaur, W.K. Behl, Electrochimica Acta, Volume 8, Issue 3, March 1963, Pages 107-114

    Article  Google Scholar 

  11. H.C. Gaur, W.K. Behl, Electrochemistry, 1965, pp. 543-55

  12. H.C. Gaur, H.L. Jindal, Electrochimica Acta, Volume 13, Issue 4, April 1968, Pages 835-842

    Article  Google Scholar 

  13. J. Sangster and A.D. Pelton, J. Phys. Chem. Ref. Data, 16(3), 509–61 (1987).

    Article  Google Scholar 

  14. Y. Dessureault, J. Sangster and A.D. Pelton, J. Chim. Phys., 87(3), 407-453 (1990).

    Google Scholar 

  15. J. Sangster and A.D. Pelton, Phase Equilibria,12(5), 511-537 (1991).

    Article  Google Scholar 

  16. P. Chartrand and A.D. Pelton, Canad. Metall. Quart., 39(4), 405-420 (2000).

    Article  Google Scholar 

  17. P. Chartrand and A.D. Pelton, Met. & Mat. Trans.,32A, 1361-83 (2001).

    Google Scholar 

  18. P. Chartrand and A.D. Pelton, Met. & Mat. Trans., 32A, 1385-96 (2001).

    Article  Google Scholar 

  19. P. Chartrand and A.D. Pelton, Canad. Metall. Quart., 40(1), 13-32 (2000).

    Article  Google Scholar 

  20. P. Chartrand and A.D. Pelton, Light Metals 2002, 245-252 (2002).

    Google Scholar 

  21. C. Robelin, P. Chartrand and A.D. Pelton, J. Chem. Thermodyn., 36(9), 793-808 (2004).

    Article  Google Scholar 

  22. C. Robelin, P. Chartrand and A.D. Pelton, J. Chem. Thermodyn., 36(9), 809-28 (2004).

    Article  Google Scholar 

  23. C. Robelin, P. Chartrand and A.D. Pelton, “Thermodynamic Evaluation and Optimization of the NaCl-KCl-AlCl3 System”, J. Chem. Thermodyn., 36(8), 683-699 (2004).

    Article  Google Scholar 

  24. C. Robelin: Master’s Thesis, Ecole Polytechnique, Montreal, 1997

  25. J. Sangster, J. Phase Equilibria, 21(3), 241-68 (2000).

    Article  Google Scholar 

  26. A.D. Pelton, S.A. Degterov, G. Eriksson, C. Robelin and Y. Dessureault, Metall. Mater. Trans. B, vol. 31B, pp. 651-659, 2000.

    Article  Google Scholar 

  27. A.D. Pelton and P. Chartrand, Metall. Mater. Trans. A, vol. 32A, pp. 1355-1360, 2001.

    Article  Google Scholar 

  28. A.D. Pelton, P. Chartrand and G. Eriksson, Metall. Mater. Trans. A, vol. 32A, pp. 1409-1416, 2001.

    Article  Google Scholar 

  29. C. Robelin, P. Chartrand and G. Eriksson, Metall. Mater. Trans. B, vol. 38B, pp. 869-879, 2007.

    Article  Google Scholar 

  30. C. Robelin and P. Chartrand, Metall. Mater. Trans. B, vol. 38B, pp. 881-892, 2007.

    Article  Google Scholar 

  31. E.G. Wilson, Phys. Rev. Letters, vol. 10(10), pp. 432-434, 1963.

    Article  Google Scholar 

  32. P.J. Durham and D.A. Greenwood, Philosophical Magazine, vol. 33(3), pp. 427-440, 1976.

    Article  Google Scholar 

  33. M. Shimoji and K. Ichikawa, Physics Letters, vol. 20(5), pp. 480-481, 1966.

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial and the technical assistance provided by the United States Department of Energy Advanced Research Project Agency (US DOE ARPA-e). Extensive technical, economic, and business discussions with James Klausner (Program Director), Bahman Abbasi, Thomas Bucher, and Daniel Matuszak were very helpful. Ray Peterson of Real Alloy provided aluminum scrap samples and industrial inputs regarding commercialization. The authors thank David Thweatt, Kevin Loutfy, Y. Kim, Jay DeSilva, Charles Ibrahim, and Mr. Robert Hoffman at MER Corporations well as Mark Gesing of Gesing Consultants Inc. all contributed significantly to the experimental process validation. The authors also thank the FactSage group at the Ecole Polytechnique, Arthur Pelton, Christian Robelin, and Aimen Gheribi for excellent training and support throughout the thermodynamic modeling effort including electrolyte electrical conductivity estimates.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subodh K. Das.

Additional information

Manuscript submitted December 30, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gesing, A.J., Das, S.K. Use of Thermodynamic Modeling for Selection of Electrolyte for Electrorefining of Magnesium from Aluminum Alloy Melts. Metall Mater Trans B 48, 132–145 (2017). https://doi.org/10.1007/s11663-016-0724-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-016-0724-8

Keywords

Navigation