Skip to main content

Trends and Challenges for Electrowinning of Aluminium and Magnesium from Molten Salt Electrolytes

  • Conference paper
  • First Online:
TMS 2020 149th Annual Meeting & Exhibition Supplemental Proceedings

Part of the book series: The Minerals, Metals & Materials Series ((MMMS))

Abstract

Modern aluminium producing cells are operating at ~955–965 °C. The current efficiency with respect to aluminium can be as high as 96% and the corresponding energy consumption may be ~13 kWh/kg Al and higher in cells running at ~300 kA or higher. The current density is ~0.9 A/cm2. Developing inert anodes for oxygen evolution and measures to eliminate PFC emissions are important research topics. The role of impurities is also an important issue. Today, magnesium is mainly produced by the Pidgeon process, which involves the reduction of MgO by silicon in the form of ferrosilicon. The thermal process is presently more economic but electrowinning in molten chlorides with MgCl2 feedstock may be more sustainable and may make a comeback. However, electrolysis is still important for producing magnesium in the Kroll process for titanium production. The presence of moisture will affect the collection of produced Mg droplets and the consumption of graphite anodes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. U.S. Geological Survey. https://www.usgs.gov/centers/nmic/minerals-yearbook-metals-and-minerals

  2. Thonstad J, Fellner P, Haarberg GM, Hives J, Kvande H, Sterten Å (2001) Aluminium electrolysis: fundamentals of the Hall-Heroult process. Aluminium-Verlag, Düsseldorf

    Google Scholar 

  3. Solheim A, Sterten Å (1997) Activity data for the system NaF-AlF3. In: Proceedings of the ninth international symposium on light metals production, Trondheim, Norway, p 225

    Google Scholar 

  4. Skybakmoen E, Solheim A, Sterten Å (1997) Alumina solubility in molten salt systems of interest for aluminum electrolysis and related phase diagram data. Metall Mater Trans B 28B:81–86

    Article  CAS  Google Scholar 

  5. Sterten Å (1980) Structural entities in NaF-AlF3 melts containing alumina. Electrochim Acta 25:1673

    Article  CAS  Google Scholar 

  6. Thonstad J, Rolseth S (1978) On the cathodic overvoltage on aluminium in cryolite-alumina melts—I. Electrochim Acta 23:223–241

    Article  CAS  Google Scholar 

  7. Jarek S, Thonstad J (1987) Light metals 1987, pp 399–407

    Google Scholar 

  8. Thonstad J (1964) On the anode gas reactions in aluminum electrolysis, II. J Electrochem Soc 111:959

    Article  CAS  Google Scholar 

  9. Bredig MA (1964) Mixtures of metals with molten salts. In: Blander M (ed) Molten salt chemistry. Interscience, New York

    Google Scholar 

  10. Ødegård R, Sterten Å, Thonstad J (1987) Light metals 1987, p 389

    Google Scholar 

  11. Wang X, Peterson RD, Richards NE (1991) Light metals 1991, p 323

    Google Scholar 

  12. Rolseth S, Thonstad J (1981) On the mechanism of the reoxidation reaction in aluminum electrolysis. In: Light metals 1981, pp 289–301

    Google Scholar 

  13. Sterten Å (1988) Current efficiency in aluminium reduction cells. J Appl Electrochem 18:473

    Article  CAS  Google Scholar 

  14. Sterten Å, Solli PA, Skybakmoen E (1998) Influence of electrolyte impurities on current efficiency in aluminium electrolysis cells. J Appl Electrochem 28:781

    Google Scholar 

  15. Sterten Å, Solli PA (1995) Cathodic process and cyclic redox reactions in aluminium electrolysis cells. J Appl Electrochem 25:809

    Google Scholar 

  16. Haarberg GM, Armoo JP, Gudbrandsen H, Skybakmoen E, Solheim A, Jentoftsen TE (2011) Current efficiency for aluminium deposition from molten cryolite-alumina electrolytes in a laboratory cell. In: Light metals 2011, pp 461–463

    Google Scholar 

  17. Li J, Xu Y, Zhang H, Lai Y (2010) An inhomogeneous three-phase model for the flow in aluminium reduction cells. Int J Multiphase Flow. https://doi.org/10.1016/j.ijmultiphaseflow.2010.08009

  18. Johansen HG, Thonstad J, Sterten Å (1977) Light metals 1977, pp 253–261

    Google Scholar 

  19. Deininger L, Gerlach J (1979) Measurements of the current efficiency in aluminium oxide electrolytic reduction on the laboratory scale. J Metall 33:131

    CAS  Google Scholar 

  20. Sterten Å, Solli PA, Skybakmoen E (1998) Influence of electrolyte impurities on current efficiency in aluminium electrolysis cells. J Appl Electrochem 28:781

    Article  CAS  Google Scholar 

  21. Haugland E, Haarberg GM, Thisted E, Thonstad J (2001) The behaviour of phosphorus impurities in aluminium electrolysis cells. In: Light metals 2001, p 549

    Google Scholar 

  22. Haarberg GM (2017) Electrochemical behaviour of dissolved titanium oxides during aluminium deposition from molten fluoride electrolytes. Mater Trans 58(3):406–409

    Article  CAS  Google Scholar 

  23. Haupin WE (1995) Principles of aluminum electrolysis. In: Light metals 1995, pp 195–203

    Google Scholar 

  24. Marks J, Byliss C (2012) GHG measurement and inventory for aluminum production. In: Light metals 2012, pp 803–808

    Google Scholar 

  25. Åsheim H, Aarhaug TA, Sandnes E, Kjos OS, Solheim A, Kolås S, Haarberg GM (2016) Anode effect initiation during aluminium electrolysis in a two-compartment laboratory cell. In: Light metals 2016, pp 551–558

    Google Scholar 

  26. Strelets KhL (1977) Electrolytic production of magnesium. Keterpress Enterprises, Jerusalem, Israel

    Google Scholar 

  27. Kipouros GJ, Sadoway DR (1987) Advances in molten salt chemistry, vol 6, Mamantov G (ed). Elsevier, Amsterdam

    Google Scholar 

  28. Høy-Petersen N (1990) From past to future. In: Light metal age, vol 48, pp 14–16

    Google Scholar 

  29. Haarberg GM, Tunold R, Osen KS (2001) Voltammetric characterization of dissolved oxygen and hydrogen containing species in chloride melts. In: Rosenkilde C (ed) Jondal 2000, Proceedings, International symposium, vol 147

    Google Scholar 

  30. Boghosian S, Godø A, Mediaas H, Ravlo W, Østvold T (1991) Oxide complexes in alkali-alkaline-earth chloride melts. Acta Chem Scand 45:145

    Google Scholar 

  31. Vilnyanski YE, Savinkova EI (1957) J Appl Chem USSR 28:827

    Google Scholar 

  32. van Norman JD, Egan JJ (1963) Magnesium-magnesium chloride system-a chronopotentiometric study. J Phys Chem 67:2460

    Article  Google Scholar 

  33. Martinez AM, Børresen B, Haarberg GM, Castrillejo Y, Tunold R (2004) Electrodeposition of magnesium from CaCl2-NaCl-KCl-MgCl2 Melts. J Electrochem Soc 151:C508–C513

    Article  CAS  Google Scholar 

  34. Mohamedi M, Børresen B, Haarberg GM, Tunold R (1999) Anodic behaviour of carbon electrodes in CaO-CaCl2 melts at 1123 K. J Electrochem Soc 146:1472

    Article  CAS  Google Scholar 

  35. Wallevik O, Amundsen K, Faucher A, Mellerud T (2000) Magnesium electrolysis—a monopolar viewpoint. In: Kaplan HI, Hryn J, Clow B (eds) Magnesium technology 2000. The Minerals, Metals & Materials Society, Warrendale, pp 13–16

    Google Scholar 

  36. Ishizuka H (1985) Method for electrolytically obtaining magnesium metal. US patent 4,495,037

    Google Scholar 

  37. Sivilotti OG (1985) Metal production by electrolysis of a molten electrolyte. US patent 4,514,269

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geir Martin Haarberg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Minerals, Metals & Materials Society

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Haarberg, G.M. (2020). Trends and Challenges for Electrowinning of Aluminium and Magnesium from Molten Salt Electrolytes. In: TMS 2020 149th Annual Meeting & Exhibition Supplemental Proceedings. The Minerals, Metals & Materials Series. Springer, Cham. https://doi.org/10.1007/978-3-030-36296-6_176

Download citation

Publish with us

Policies and ethics