Skip to main content
Log in

Experimental Evaluation of the Dissolution Rates of Ti and FeTi70 in Liquid Fe

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

During secondary steelmaking, improving alloy yield and engineering inclusion content require understanding and quantification of the alloy distribution in the melt. When additions are dropped in the melt, a steel shell solidifies around them. After this shell has melted, the alloy is spread in the melt. The influence of process parameters on the duration of the shell period for Ti and FeTi70 additions has been experimentally evaluated. For Ti, the melt temperature and the initial addition size were varied and for FeTi70, only the melt temperature was varied. By continuously measuring the apparent weight of submerged samples with a load cell, the shell period and the amount of molten alloy within the shell were determined. The shell period increases at lower superheats and for larger sample sizes. For a certain size of Ti additions, the molten content within the shell increases with increasing shell period. The importance of this period, relative to the total dissolution time, increases at lower superheats. All investigated FeTi70 samples may melt completely within the shell. While the shell period lasts longer for FeTi70 than for the corresponding Ti samples, this fast internal melting yields a net reduction in total dissolution time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. K.W. Lange: Int. Mater. Rev., 1988, vol. 33(2), pp. 53-89.

    Article  CAS  Google Scholar 

  2. R. Dekkers, B. Blanpain, P. Wollants, F. Haers, C. Vercruyssen and B. Gommers: Ironmaking Steelmaking, 2002. vol. 29(6), pp. 437-444.

    Article  CAS  Google Scholar 

  3. J. Lehmann, J. P. Rocabois and H. Gaye: J. Non-Cryst. Solids, 2001, vol. 282, pp. 61-71.

    Article  CAS  Google Scholar 

  4. R. Kiessling and N. Lange: Non-metallic Inclusions in Steel, The Institute of Materials, London, 1997.

    Google Scholar 

  5. S.K. Dhua, A. Ray, S.K. Sen, M.S. Prasad, K.B. Mishra and S. Jha: J. Mater. Eng. Perform., 2000, vol. 9(6), pp. 700-709.

    Article  CAS  Google Scholar 

  6. L. Zhang and F. Oeters: Melting and mixing of alloying agents in steel melts, Verlag Stahleisen GmbH, Dusseldorf, 1999.

    Google Scholar 

  7. P. Gardin, J.-F. Domgin, M. Simonnet, J. Lehmann: Rev. Metall. - Cah. Inf. Tech., 2008, vol. 105(2), pp. 84-91.

    Article  CAS  Google Scholar 

  8. S.A. Argyropoulos: PhD Thesis, 1981, McGill University.

  9. O. Ehrich, Y.K. Chuang and K. Schwerdtfeger: Arch. Eisenhüttenwes., 1979, vol. 50(8), pp. 329-334.

    Google Scholar 

  10. O. Ehrich, Y.-K. Chuang and K. Schwerdtfeger: Int. J. Heat Mass Transfer, 1978, vol. 21, pp. 341-349.

    Article  CAS  Google Scholar 

  11. J. Szekely, Y.K. Chuang and J.W. Hlinka: Metall. Trans., 1972, vol. 3, pp. 2825-2833.

    Article  CAS  Google Scholar 

  12. H.A. Friedrichs, O. Knacke and H. Jauer: Arch. Eisenhüttenwes., 1973, vol. 44(12), pp. 879-886.

    CAS  Google Scholar 

  13. O.J.P. Gonzalez, M.A. Ramirez-Argaez and A.N. Conejo: ISIJ Int., 2010, vol. 50(1), pp. 9-16.

    Article  CAS  Google Scholar 

  14. S.A. Argyropoulos and P.G. Sismanis: Steel Res., 1997, vol. 68(8), pp. 345-354.

    CAS  Google Scholar 

  15. S.A. Argyropoulos and P.G. Sismanis: Metall. Trans. B, 1991, vol. 22B(4), pp. 417-427.

    Article  CAS  Google Scholar 

  16. S.A. Argyropoulos and R.I.L. Guthrie: Metall. Trans. B, 1984, vol. 15B(1), pp. 47-58.

    Article  CAS  Google Scholar 

  17. L. Pandelaers, F. Verhaeghe, B. Blanpain and P. Wollants: Defect Diffus. Forum, 2008, vol. 273-276, pp. 467-473.

    Article  Google Scholar 

  18. L. Pandelaers, F. Verhaeghe, B. Blanpain, P. Wollants and P. Gardin: Metall. Trans. B, 2009, vol. 40B, pp. 676-684.

    Article  CAS  Google Scholar 

  19. L. Pandelaers, F. Verhaeghe, D. Barrier, P. Gardin, P. Wollants and B. Blanpain: Ironmaking Steelmaking, 2010, vol. 37(7), pp. 516-521.

    Article  CAS  Google Scholar 

  20. S.A. Argyropoulos and R.I.L. Guthrie: Can. Metall. Q., 1979, vol. 18(3), pp. 267-281.

    Article  CAS  Google Scholar 

  21. Y.E. Lee, H. Berg and B. Jensen: Ironmaking Steelmaking, 1995, vol. 22(6), pp. 486-494.

    CAS  Google Scholar 

  22. J. Leitner, C. Hauler, F. Oeters, L. Zhang and S. Eriksson: Stahl Eisen, 2000, vol. 120(11), pp. 69-74.

    CAS  Google Scholar 

  23. L.E. Iorio, W.M. Garrison Jr.: Metall. Mater. Trans. A, 2006, vol. 37A, pp. 1165-1173.

    Article  CAS  Google Scholar 

  24. M.A. Van Ende, M.X. Guo, R. Dekkers, M. Burty, J. Van Dyck, P.T. Jones, B. Blanpain and P. Wollants: ISIJ Int., 2009, vol. 49(8), pp. 1133-1140.

    Article  Google Scholar 

  25. H. Matsuura, C. Wang, G. Wen and S. Sridhar: ISIJ Int., 2007, vol. 47(9), pp. 1265-1274.

    Article  CAS  Google Scholar 

  26. H.K.C. Kumar, L.F.S. Dumitrescu, B. Sundman and P. Wollants: XXVIII CALPHAD meeting, Grenoble, May 2-7, 1999.

    Google Scholar 

  27. M.M. Pande, M. Guo, X. Guo, D. Geysen, S. Devisscher, B. Blanpain, and P. Wollants: Proceedings of The Twelfth International Ferroalloys Congress, 2010, June 6–9, pp. 935–44.

  28. M.J. Assael, K. Kakosimos, M. Bannish, J. Brillo, I. Egry, R. Brooks, P.N. Quested, K.C. Mills, A. Nagashima, Y. Sato and W.A. Wakeham: J. Phys. Chem. Ref. Data, 2006, vol. 35(1), pp. 285-300.

    Article  CAS  Google Scholar 

  29. Y. Zhumagaliev, S. Baisanov, A. Chekimbaev and N. Nurgali: Proceedings of The Twelfth International Ferroalloys Congress, 2010, June 6-9, pp. 653-656.

  30. O. Heinen, D. Holland-Moritz, and D.M. Herlach: Mater. Sci. Eng. A, 2007, vol. 449–451A, pp. 662–65.

  31. Y. Terada, K. Ohkubo, K. Nakagawa, T. Mohri, and T. Suzuki: Intermetallics, 1995, vol. 3, pp. 347–355.

    Article  CAS  Google Scholar 

  32. S. Sanyal, S. Chandra, S. Kumar, and G.G. Roy: ISIJ Int., 2004, vol. 44(7), pp. 1157–1166.

    Article  CAS  Google Scholar 

  33. S. Sanyal, J. K. Saha and S. Chandra: Steel Res., 2009, vol. 80(8), pp. 559-567.

    CAS  Google Scholar 

  34. L. Pandelaers, F. Verhaeghe, P. Wollants and B. Blanpain: Int. J. Heat Mass Transfer, 2011, vol. 54, pp. 1039-1045.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lieven Pandelaers.

Additional information

Manuscript submitted May 29, 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pandelaers, L., Barrier, D., Gardin, P. et al. Experimental Evaluation of the Dissolution Rates of Ti and FeTi70 in Liquid Fe. Metall Mater Trans B 44, 561–570 (2013). https://doi.org/10.1007/s11663-013-9822-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-013-9822-z

Keywords

Navigation