Skip to main content
Log in

Interfacial Reactions During Titanium Dissolution in Liquid Iron: A Combined Experimental and Modeling Approach

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The dissolution behavior of Ti in liquid Fe has been investigated experimentally and theoretically within the framework of inclusion formation in steel. In the experimental study, Ti cylinders have been immersed into liquid Fe and, subsequently, water-quenched. Macroscopic observation of quenched samples shows the initial solidification of an Fe shell around the Ti. Microstructural analysis of the Fe-Ti interfacial area with a scanning electron microscope equipped with an energy dispersive X-ray spectrometer reveals that a reaction zone develops in a three-step process: formation of a first liquid eutectic layer rich in Ti, formation of a second eutectic layer rich in Fe, and then mixing of both layers. The reaction zone grows in thickness up to 40 pct of the original sample radius and dissolves both parts of the Ti sample and the Fe shell. A simplified, one-dimensional, implicit finite volume model has been used to describe these phenomena theoretically. Good qualitative agreement is achieved between experiment and model. The model has been used to estimate the influence of original addition size, preheating, convection, and superheating on the required melt-back time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. S.A. Argyropoulos and R.I.L. Guthrie: Can. Metall. Q., 1979, vol. 18(3), pp. 267–81.

    CAS  Google Scholar 

  2. P.G. Sismanis and S.A. Argyropoulos: Can. Metall. Q., 1988, 27(2), pp. 123–33.

    CAS  Google Scholar 

  3. S.A. Argyropoulos and P.G. Sismanis: Metall. Trans. B, 1991, vol. 22(4), pp. 417–27.

    Article  Google Scholar 

  4. L. Zhang and F. Oeters: Melting and Mixing of Alloying Agents in Steel Melts, Verlag Stahleisen GmbH, Dusseldorf, Germany, 1999.

    Google Scholar 

  5. S.A. Argyropoulos: Ph.D. Dissertation, McGill University, Montreal, Canada, 1981.

  6. S.A. Argyropoulos and R.I.L. Guthrie: Metall. Trans. B, 1984, vol. 15(1), pp. 47–58.

    Article  Google Scholar 

  7. P. Gardin, J.-F. Domgin, M. Simonnet, and J. Lehmann: Revue Metallurgie, 2008, vol. 105(2), pp. 84–91.

    Article  CAS  Google Scholar 

  8. J. Szekely and Y.K. Chuang: Chem. Eng. Sci., 1972, vol. 27(12), pp. 2300–04.

    Article  CAS  Google Scholar 

  9. S.A. Argyropoulos and H.F. Hu: Int. J. Heat Mass Transfer, 1996, vol. 39(5), pp. 1005–21.

    Article  Google Scholar 

  10. S.A. Argyropoulos and P.G. Sismanis: Steel Res., 1997, vol. 68(8), pp. 345–54.

    CAS  Google Scholar 

  11. K.C.H. Kumar, P. Wollants, and L. Delaey: Calphad Comput. Coupling Phase Diagrams Thermochem., 1994, vol. 18(2), pp. 223–34.

    CAS  Google Scholar 

  12. L.F.S. Dumitrescu, M. Hillert, and N. Saunders: J. Phase Equilibria, 1998, vol. 19(5), pp. 441–48.

    Article  CAS  Google Scholar 

  13. G. Cacciamani, J. De Keyzer, R. Ferro, U.E. Klotz, J. Lacaze, and P. Wollants: Intermetallics, 2006, vol. 14(10–11), pp. 1312–25.

    Article  CAS  Google Scholar 

  14. C.A. Sims: Electric Furnace Steelmaking, AIME, New York, NY, 1967.

    Google Scholar 

  15. L. Pandelaers, F. Verhaeghe, B. Blanpain, and P. Wollants: Defect Diffusion Forum, 2008, vol. 273–276, pp. 467–73.

    Article  Google Scholar 

  16. H.S. Carslaw and J.C. Jaeger: Conduction of Heat in Solids, Oxford University Press, Clarendon, Oxford, 1984.

    Google Scholar 

  17. S.C. Gupta: Int. J. Heat Mass Transfer, 1990, vol. 33(4), pp. 593–602.

    Article  CAS  Google Scholar 

  18. S.V. Patankar; Numerical Heat Transfer and Fluid Flow, Hemisphere, Washington, DC, 1980.

    MATH  Google Scholar 

  19. Y.S. Touloukian: Thermal Conductivity: Metallic Elements and Alloys, IFI/Plenum, New York, NY, 1978.

    Google Scholar 

  20. Y.S. Touloukian and E.H. Buyco: Specific Heat: Metallic Elements and Alloys, IFI/Plenum, New York, NY, 1978.

    Google Scholar 

  21. N. Mehdipour, A. Boushehri, and H. Eslami: J. Non-Cryst. Solids, 2005, vol. 351(16–17), pp. 1333–37.

    Article  ADS  CAS  Google Scholar 

  22. M.J. Assael, K. Kakosimos, R.M. Banish, J. Brillo, I. Egry, R. Brooks, P. N. Quested, K.C. Mills, A. Nagashima, Y. Sato, and W.A. Wakeham: J. Phys. Chem. Ref. Data, 2006, vol 35(1), pp. 285–300.

    Article  ADS  CAS  Google Scholar 

  23. D.Y. Povolotskiy, V.E. Roshchin, and A.N. Keys: Russ. Metall., 1970, vol. 5, pp. 162–64.

    Google Scholar 

  24. T.A. Engh: Principles of Metal Refining, Oxford University Press, Oxford, UK, 1992.

    Google Scholar 

  25. P.F. Paradis, T. Ishikawa, and S. Yoda: Int. J. Thermophys., 2002, vol. 23(3), pp. 825–42.

    Article  CAS  Google Scholar 

  26. G.H. Rodway and J.D. Hunt: J. Mater. Sci., 1988, vol. 23(3), pp. 814–22.

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgments

L. Pandelaers acknowledges the financial support from the IWT Grant SB-61446. F. Verhaeghe acknowledges the support of the Research Foundation - Flanders (FWO - Vlaanderen) through a postdoctoral fellowship. L. Pandelaers also would like to thank J. Fransaer for the constructive discussions as well as ArcelorMittal Research and Development for the support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lieven Pandelaers.

Additional information

Manuscript submitted January 22, 2009.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pandelaers, L., Verhaeghe, F., Blanpain, B. et al. Interfacial Reactions During Titanium Dissolution in Liquid Iron: A Combined Experimental and Modeling Approach. Metall Mater Trans B 40, 676–684 (2009). https://doi.org/10.1007/s11663-009-9273-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-009-9273-8

Keywords

Navigation