Skip to main content
Log in

Designing the Color of Hot-Dip Galvanized Steel Sheet Through Destructive Light Interference Using a Zn-Ti Liquid Metallic Bath

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The color of hot-dip galvanized steel sheet was adjusted in a reproducible way using a liquid Zn-Ti metallic bath, air atmosphere, and controlling the bath temperature as the only experimental parameter. Coloring was found only for samples cooled in air and dipped into Ti-containing liquid Zn. For samples dipped into a 0.15 wt pct Ti-containing Zn bath, the color remained metallic (gray) below a 792 K (519 °C) bath temperature; it was yellow at 814 K ± 22 K (541 °C ± 22 °C), violet at 847 K ± 10 K (574 °C ± 10  °C), and blue at 873 K ± 15 K (600 °C ± 15 °C). With the increasing bath temperature, the thickness of the adhered Zn-Ti layer gradually decreased from 52 to 32 micrometers, while the thickness of the outer TiO2 layer gradually increased from 24 to 69 nm. Due to small Al contamination of the Zn bath, a thin (around 2 nm) alumina-rich layer is found between the outer TiO2 layer and the inner macroscopic Zn layer. It is proven that the color change was governed by the formation of thin outer TiO2 layer; different colors appear depending on the thickness of this layer, mostly due to the destructive interference of visible light on this transparent nano-layer. A complex model was built to explain the results using known relationships of chemical thermodynamics, adhesion, heat flow, kinetics of chemical reactions, diffusion, and optics. The complex model was able to reproduce the observations and allowed making predictions on the color of the hot-dip galvanized steel sample, as a function of the following experimental parameters: temperature and Ti content of the Zn bath, oxygen content, pressure, temperature and flow rate of the cooling gas, dimensions of the steel sheet, velocity of dipping the steel sheet into the Zn-Ti bath, residence time of the steel sheet within the bath, and the velocity of its removal from the bath. These relationships will be valuable for planning further experiments and technologies on color hot-dip galvanization of steel by Zn-Ti alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. A.R. Marder: Prog. Mater. Sci., 2000, vol.45, pp. 191–271

    Article  Google Scholar 

  2. A. Semoroz, L. Strezov, and M. Rappaz: Metall. Mater. Trans. A, 2002, vol. 33A, pp. 2695–701

    Article  Google Scholar 

  3. A. Szabo, E. Denes: Mater. Sci. Forum, 2003, vol. 414-415, pp. 45-50

    Article  Google Scholar 

  4. F.M.Bellhouse, A.I.M.Mertense, J.R.McDermid: Mater. Sci. Eng. A. 2007, vol. 463, pp. 147-56

    Article  Google Scholar 

  5. S.Kaboli, J.R.McDermid: Metall. Mater. Trans. A., 2014, vol. 45A, pp. 3938-53

    Article  Google Scholar 

  6. H.Yang, S.Zhang, J.Li, Y.Liu, H.Wang: Surf. Coat. Technol. 2014, vol. 240, pp. 269-74

    Article  Google Scholar 

  7. S.M.A. Shibli, B.N.Meena, R.Remya: Surf. Coat. Technol, 2015, vol. 262, pp. 210-15

    Article  Google Scholar 

  8. G.Liu, J.Xing, S.Ma, Y.He, H.Fu, Y.Gao, Y.Wang, Y.Wang: Metall. Mater. Trans. A, 2015, vol.46, pp. 1900-07

    Article  Google Scholar 

  9. Y.Wang, J.Zeng: Mater. Design: 2015, vol. 69, pp. 64-69

    Article  Google Scholar 

  10. M.Panjan, M.Klanjsej Gunde, P.Panjan, M.Cekada: Surf. Coat. Technol., 2014, vol. 254, pp. 65-72

    Article  Google Scholar 

  11. J.Corredor, C.P.Bergmann, M.Pereira, L.F.P.Dick: Surf. Coat. Technol. 2014, vol. 245, pp. 125-32

    Article  Google Scholar 

  12. D.P.Adams, R.D.Murphy, D.J.Saiz, D.A.Hirschfeld, M.A:Rodriguez, P.G.Kouta, B.H.Jared: Surf. Coat. Technol., 2014, vol. 248, pp. 38-45

    Article  Google Scholar 

  13. R.W. Smyth: US patent 3530013, 1970

  14. P. B. Philip, R. Zeliznak: US patent 37783l5, 1971

  15. M.Tomita, S.Yamamoto: European patent EP0269005A2, 1987

  16. M.Tomita, S.Yamamoto, C. Tominaga, K. Nakayama: British patent GB1243562, 1991

  17. Q. C. Le, J.Z. Cui: Chin. J. Nonferr. Met., 1998, vol. 8, pp. 98-102

    Google Scholar 

  18. Q. C. Le, J. Z. Cui: Acta Metall. Sin., 1999, vol. 12, pp. 1217-22

    Google Scholar 

  19. Q. C. Le, J.Z. Cui, C.H. Hou: Chin. J. Nonferr. Met., 2000, vol. 10, pp. 388- 94

    Google Scholar 

  20. Q.C. Le, J.Z. Cui: Surf. Eng., 2008, vol. 24, pp. 57-62

    Article  Google Scholar 

  21. G. Lévai, M. Godzsák, A. Ender, R. Márkus, T.I. Török: Mater. Sci. Forum, 2013, vol. 729, pp. 61-67

    Article  Google Scholar 

  22. Y.Wang, J.Zheng: Surf. Coat. Technol., 2014, vol. 245, pp. 55-65

    Article  Google Scholar 

  23. J.Emsley: The Elements. Clarendon Press, Oxford, 1989

    Google Scholar 

  24. T.Iida, R.I.L.Guthrie. The Physical Properties of Liquid Metals, Clarendon Press, Oxford, 1993

    Google Scholar 

  25. I.Barin. Thermochemical Properties of Pure Substances, VCh, 1993

    Google Scholar 

  26. T.B. Massalski ed.: Binary Alloy Phase Diagrams, 2nd ed., 3 volumes, ASM International, Materials Park, 1990

  27. F.R.deBoer, R.Boom, W.C.M.Mattens, A.R.Miedema: Cohesion in Metals, North-Holland, Amsterdam, 1988

    Google Scholar 

  28. G.Kaptay: Calphad 2004, vol.28, pp. 115-24

    Article  Google Scholar 

  29. G.Kaptay: Metall. Mater. Trans. A, 2012, vol. 43A, pp. 531-43

    Article  Google Scholar 

  30. D.R.Poirier, G.H.Geiger: Transport Phenomena in Materials Processing, TMS, Warrendale, 1994

    Google Scholar 

  31. G.V.Samsonov (ed.): Fiziko-khimicheskie svoistva okislov—Moskva, Metallurgiia, 1978

  32. B.Predel: Phase Equilibria, Crystallographic and Thermodynamic Data of Binary Alloys, vol 5 of group IV of Landolt-Börnstein Handbook, Springer-Verlag, Berlin, 1991-97

  33. G.Kaptay: Materials equilibria in maco-, micro- and nano-system. Raszter Nyomda, 2011

  34. G.Kaptay: J. Mater. Sci., 2005, vol. 40, pp. 2125-35

    Article  Google Scholar 

  35. G.Kaptay: J. Disp. Sci. Technol., 2012, vol. 33, pp. 130-40

    Article  Google Scholar 

  36. G.Kaptay: Mater. Sci. Forum, 2005, vol. 473-474, pp. 1-10

    Article  Google Scholar 

  37. G.Kaptay, E.Báder, L.Bolyán: Mater. Sci. Forum, 2000, vol. 329-330, pp. 151-56

    Article  Google Scholar 

  38. Y.S.Touloukian, R.K.Kirby, R.E.Taylor, T.Y.R.Lee: Thermal Expansion, IFI/Plenum, NY, 1977

    Book  Google Scholar 

  39. G.Kaptay: Int. J. Mater Res., 2008, vol. 99, pp. 14-17

    Article  Google Scholar 

  40. W. Chen, L. Zhang, Y. Du, B. Huang: Phil. Mag., 2014, vol. 94, pp. 1552-77

    Article  Google Scholar 

  41. G. Ábrahám ed.: Optics, Panem, McGraw-Hill, Budapest, 1998

  42. S. Van Gils, P.Mas, E.Stijns, H.Terryn: Surf. Coat. Technol., 2004, vol. 185, pp. 303-10

    Article  Google Scholar 

Download references

Acknowledgments

The corresponding author acknowledges the financial support of project K101781 of the Hungarian Academy of Sciences. The present results are achieved in the Center of Applied Materials Science and Nano-Technology at the University of Miskolc and within the TÁMOP-4.2.2.A-11/1/KONV-2012-0019 project, and carried out as part of the TÁMOP-4.2.2.D-15/1/KONV-2015-0017 project in the framework of the New Széchenyi Plan. The realization of this project is supported by the European Union, and co-financed by the European Social Fund. The authors thank Szendrő Galva Ltd for providing us with SHG Zn and to Salgó Metall Ltd for providing us with titanium shavings. They also thank Dr. Olivér Bánhidi for his help in ICP analysis of the Ti shavings and of the Zn-Ti alloy. The authors appreciate the help of color measurements provided by Dr. Tamás Szabó. The inspiration received from late Dr. Éva Dénes of Dunaferr Ltd (Hungary) is mostly appreciated at the beginning of this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George Kaptay.

Additional information

Manuscript submitted July 9, 2015.

Appendix Thermodynamic Properties of the Fe/Zn-Ti/O2 System

Appendix Thermodynamic Properties of the Fe/Zn-Ti/O2 System

Standard formation Gibbs energies of possible Zn oxides and Ti oxides are collected in Table AI.[25] The oxides are positioned along their increasing Ti content in Table AI.

Table AI Standard Formation Gibbs Energies of Oxides (\( \Delta_{f} G_{\text{i}}^{ \circ } \), kJ/mol)[25]*

As the Ti content in the Zn bath is below 1 mol pct, the Zn bath is modeled as an infinitely diluted solution in Ti. Thus, the activity coefficient of Ti (\( \gamma_{\text{Ti}}^{\infty } \)) is independent of its mole fraction:

$$ R \times T \times \ln \gamma_{\text{Ti}}^{\infty } \equiv \Delta G_{\text{Ti}}^{E\infty }, $$
(A1)

where \( \Delta G_{\text{Ti}}^{E\infty } \left( {{\text{J}}/{\text{mol}}} \right) \) is the partial molar excess Gibbs energy of Ti in liquid Zn, R = 8.3145 J/molK, the universal gas constant, and T (K) is the absolute temperature. Unfortunately, there are no measured data available for \( \Delta G_{\text{Ti}}^{E\infty } \). However, the sign of this quantity is expected as \( \Delta G_{\text{Ti}}^{E\infty } < 0 \), as follows from the existence of stable intermetallic compounds in the Zn-Ti binary equilibrium phase diagram.[26] From the Miedema model,[27] \( \Delta H_{\text{Ti}}^{\infty } \cong - 61 \) kJ/mol, which is in agreement with the expected sign of \( \Delta G_{\text{Ti}}^{E\infty } \). Combining this value with the most probable value of the excess entropy,[28] the most probable equation for the partial excess Gibbs energy of Ti is written as (in kJ/mol)

$$ \Delta G_{\text{Ti}}^{E\infty } \cong - 61 \times \exp ( - T/3000). $$
(A2)

Substituting Eq. [A2] into Eq. [A1],

$$ \gamma_{\text{Ti}}^{\infty } \cong \exp \left[ {\frac{ - 7340}{T} \times \exp \left( { - \frac{T}{3000}} \right)} \right]. $$
(A3)

The values, calculated by Eq. [A3], are collected in Table AII at different temperatures. One can see that \( \gamma_{\text{Ti}}^{\infty } < 1 \), and also that with the increasing temperature, its value tends toward 1, i.e., the real solution tends toward the ideal solution, in accordance with the general law.[29]

Table AII Activity Coefficients of Ti in the Diluted Solution of Liquid Zn at Different Temperatures Estimated by Eq. [A3]

Now, let us estimate the standard Gibbs energies of formation of intermetallic compounds FeZn and FeTi (in kJ/mol):

$$ \Delta_{f} G_{\text{FeZn}}^{ \circ } \cong - 8.0 \times \left( {1 - \frac{T}{\tau }} \right), $$
(A4)
$$ \Delta_{f} G_{\text{FeTi}}^{ \circ } \cong - 62 \times \left( {1 - \frac{T}{\tau }} \right). $$
(A5)

The numerical values (−8.0 and −62 kJ/mol) in Eqs. [A4] and [A5] are the standard heats of formation of the intermetallic compounds,[32] while parameter \( \tau \cong \) 8300 K (8027 °C) is the average value for the intermetallic compounds.[33] The values, calculated by Eqs. [A4] through [A5], are given in Table AIII.

Table AIII Estimated Gibbs energies of formation of FeTi and FeZn intermetallic compounds, calculated by Eqs. [A4] and [A5]

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Levai, G., Godzsák, M., Török, T.I. et al. Designing the Color of Hot-Dip Galvanized Steel Sheet Through Destructive Light Interference Using a Zn-Ti Liquid Metallic Bath. Metall Mater Trans A 47, 3580–3596 (2016). https://doi.org/10.1007/s11661-016-3545-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-016-3545-0

Keywords

Navigation