Skip to main content
Log in

Application of the Eyring Equation in the Evaluation of Semi-Solid Forming-Induced Si Particle Refinement in the Hypereutectic Al-Si Alloys

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

On the basis of Eyring’s theory of absolute reaction rate, an approach to modeling Si particle refinement acceleration in the semi-solid forming of a hypereutectic Al-Si alloy has been developed. The acceleration variable data used in the present analysis were obtained from a semi-solid compression test using Al-25 mass pct Si alloy cylindrical specimens with a diameter of 15 mm and a height of 15 mm; the test conditions comprised a combination of compression displacements ∆h = 5, 10, and 12 mm; compression rates v = 5, 25, and 125 mm/min; and test temperatures T = 853 K and 863 K (580 °C and 590 °C). The coarse primary Si particle refinement depends on a complex interaction among variables, such as compression displacement, compression rate, and test temperature. The performance of Si particle refinement degraded under higher temperature, slower strain rates, and slower shear rates. The results of the Si particle size are suitably summarized by the Eyring equation as a function of the temperature and the shear rate. The baseline Si particle size and the baseline temperature of Si particle refinement, i.e., the reference temperature, were G N = 0.27 mm and T N = 866.4 K (593.4 °C), respectively. The calculated results using this equation correlated well with the observed results. An acceleration factor of Si particle refinement was successfully derived on the basis of this equation and indicated that operating at a higher shear rate and a temperature just above the melting point of eutectic Al-Si alloy are the optimum conditions for refining Si particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. D. Kececioglu and J.A. Jacks: Reliability Eng., 1984, vol. 8, pp. 1-9.

    Article  Google Scholar 

  2. L. Mishnaevsky Jr and P. Brϕndsted: Int. J. Fract., 2007, vol.144, pp.149-158.

    Article  Google Scholar 

  3. H. Caruso and A. Dasgupta: Proc. Annual Reliability and Maintainability Sympo., IEEE, 1988, pp. 389–93.

  4. B.K. Prasad, K. Venkateswarlu, O.P. Modi, A.K. Jha, S. Das, R. Dasgupta, and A.H. Yegneswaran : Metall. Mater. Trans. A, 1998, vol. 29A, pp. 2747-2752.

    Article  Google Scholar 

  5. J.U. Ejiofor and R.G. Reddy: JOM, 1997, vol. 49, pp. 31-37.

    Article  Google Scholar 

  6. D.H. Kirkwood, M. Suéry, P. Kapranos, H.V. Atkinson, and K.P. Young: Semi-solid processing of alloys, Springer Berlin Heidelberg, Germany, 2010.

    Book  Google Scholar 

  7. A. Mazahery and M.O. Shabani: JOM, 2014, vol. 66, pp. 726-738.

    Article  Google Scholar 

  8. D.S.B. Heidary and F. Akhlaghi: Metall. Mater. Trans. A, 2010, vol. 41A, pp. 3435-3442.

    Article  Google Scholar 

  9. F.F. Wu, S.T. Li, G.A. Zhang, and F. Jiang: Bull. Mater. Sci., 2014, vol. 37, pp.1153-1157.

    Article  Google Scholar 

  10. T.B. Massalski, ed.: Binary Alloy Phase Diagrams, 2nd ed., Plus Updates on CD-ROM Version 1.0, ASM International 1996.

  11. Y. Fukui, D. Nara, K. Fushimi, M. Nakao, and N. Kumazawa: Int. J. Mater. Sci. Appl., 2015, vol.4, pp.12-19.

    Google Scholar 

  12. Y. Fukui, D. Nara, and N. Kumazawa: Metall. Mater. Trans. A, 2015, vol.46A, pp.1908-1916.

    Article  Google Scholar 

  13. V. Laxmanan and M.C. Flemings: Metall. Trans. A, 1980, vol. 11A, pp.1927-1937.

    Article  Google Scholar 

  14. J.A. Yurko and M.C. Flemings: Metall. Mater. Trans. A, 2002, vol. 33A, pp. 2737-2746.

    Article  Google Scholar 

  15. Y. Watanabe, N. Yamanaka, and Y. Fukui: Composites Part A, 1998, vol. 29A, pp. 595-601.

    Article  Google Scholar 

  16. Y. Fukui, H. Okada, N. Kumazawa, and Y. Watanabe: Metall. Mater. Trans. A, 2000, vol. 31A, pp. 2627-2636.

    Article  Google Scholar 

  17. K. Yamagiwa, Y. Watanabe, K. Matsuda, Y. Fukui, and P. Kapranos: Mater. Sci. Eng. A, 2006, vol. A416, pp. 80-91.

    Article  Google Scholar 

  18. E.W. Hart: Acta Metallurgica, 1967, vol.15, pp. 351-355.

    Article  Google Scholar 

Download references

Acknowledgment

This research work has been partially supported by The Light Metal Educational Foundation Incorporated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daisaku Nara.

Additional information

Manuscript submitted March 9, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fukui, Y., Nara, D., Fushimi, K. et al. Application of the Eyring Equation in the Evaluation of Semi-Solid Forming-Induced Si Particle Refinement in the Hypereutectic Al-Si Alloys. Metall Mater Trans A 46, 5856–5863 (2015). https://doi.org/10.1007/s11661-015-3143-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-015-3143-6

Keywords

Navigation