Skip to main content
Log in

Strengthening Mechanisms in Thermomechanically Processed NbTi-Microalloyed Steel

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The effect of deformation temperature on microstructure and mechanical properties was investigated for thermomechanically processed NbTi-microalloyed steel with ferrite-pearlite microstructure. With a decrease in the finish deformation temperature at 1348 K to 1098 K (1075 °C to 825 °C) temperature range, the ambient temperature yield stress did not vary significantly, work hardening rate decreased, ultimate tensile strength decreased, and elongation to failure increased. These variations in mechanical properties were correlated to the variations in microstructural parameters (such as ferrite grain size, solid solution concentrations, precipitate number density and dislocation density). Calculations based on the measured microstructural parameters suggested the grain refinement, solid solution strengthening, precipitation strengthening, and work hardening contributed up to 32 pct, up to 48 pct, up to 25 pct, and less than 3 pct to the yield stress, respectively. With a decrease in the finish deformation temperature, both the grain size strengthening and solid solution strengthening increased, the precipitation strengthening decreased, and the work hardening contribution did not vary significantly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. B. Dutta, C.M. Sellars: Mater. Sci. Tech., 1987, vol. 3, pp. 197 - 206.

    Article  Google Scholar 

  2. O. Kwon, A.J. DeArdo: Acta Metall. Mater., 1991, vol. 39(4), pp. 529 - 538.

    Article  Google Scholar 

  3. T. Gladman: The Physical Metallurgy of Microalloyed Steels, the Institute of Materials, Cambridge University Press, Cambridge, 1997.

    Google Scholar 

  4. R.W. Cahn: Physical Metallurgy, North-Holland Publishing, Amsterdam, 1970.

    Google Scholar 

  5. F.C. Frank and W.T. Read: Phys. Rev. Lett., 1950, vol. 79, pp. 722 – 723.

    Google Scholar 

  6. S.N. Prasad and D.S. Sarma: Mater. Sci. Eng. A, 2005, vol. 408, pp. 53 – 63.

    Article  Google Scholar 

  7. J.K. Patel, B. Wilshire: J. Mater. Process. Tech., 2002, vol. 120, pp. 316–321.

    Article  Google Scholar 

  8. C.P. Reip, S. Shanmugam, R.D.K. Misra: Mater. Sci. Eng. A, 2006, vol. 424, pp. 307–317.

    Article  Google Scholar 

  9. J. Irvine, T.N. Baker: Mater. Sci. Eng., 1984, vol. 64, pp. 123-134.

    Article  Google Scholar 

  10. A. Bakkaloglu: Mater. Lett., 2002, vol. 56, pp. 200 – 209.

    Article  Google Scholar 

  11. L.-Y. Lan, C.-L. Qiu, D.-W. Zhao, X.-H. Gao: J. Iron Steel Res. Int., 2011, vol. 18(2), pp. 57-63.

    Article  Google Scholar 

  12. I. Olivares, M. Alanis, R. Mendoza, B. Campillo, J. A. Juarez-Islas: Ironmak. Steelmak., 2008, vol. 35, № 6, pp. 452 – 457.

    Article  Google Scholar 

  13. R. Wang, C. I. Garcia, M. Hua, K. Cho, H. Zhang, A. J. DeArdo: ISIJ Int., 2006, vol. 46 (9), pp. 1345–1353.

    Article  Google Scholar 

  14. R.D.K. Misra, K.K. Tenneti, G.C. Weatherly, G. Tither: Metall. Mater. Trans. A, 2003, vol. 34, pp. 2341 – 2351.

    Article  Google Scholar 

  15. D. Williams and C.B. Carter: Transmission Electron Microscopy, II—Diffraction, Plenum Press, New York, NY, 1996, pp. 321–23.

    Book  Google Scholar 

  16. E.V. Pereloma and J.D. Boyd: Mater. Sci. Tech., 1996, vol. 12, pp. 808-817.

    Article  Google Scholar 

  17. A.J. Craven, K. He, L.A. Garvie, T.N. Baker: Acta Mater., 2000, vol. 48, pp. 3857 – 3868.

    Article  Google Scholar 

  18. E.V. Pereloma, B.R. Crawford and P.D. Hodgson: Mater. Sci. Eng. A, 2001, vol. 299, pp. 27–37.

    Article  Google Scholar 

  19. R.D.K. Misra, H. Nathani, J.E. Hartmann, F. Siciliano: Mater. Sci. Eng. A, 2005, vol. 394, pp. 339–352.

    Article  Google Scholar 

  20. A.G. Kostryzhev, M. Strangwood and C.L. Davis: Mater. Technol., 2007, vol. 22, № 3, p. 166 – 172.

    Article  Google Scholar 

  21. H. R. Wang, W. Wang: J. Mater. Sci., 2009, vol. 44, pp. 591–600.

    Article  Google Scholar 

  22. M. Gomez, P. Valles, S. F. Medina: Mater. Sci. Eng. A, 2011, vol. 528, pp. 4761–4773.

    Article  Google Scholar 

  23. F. Yin, T. Hanamura, O. Umezawa, K. Nagai: Mater. Sci. Eng. A, 2003, vol. 354, pp. 31 – 39.

    Article  Google Scholar 

  24. H. Yu, Y. Kang, H. Dong: J. Univ. Sci. Technol. B., 2006, vol. 13 (5), pp. 406 – 410.

    Article  Google Scholar 

  25. H.-J. Kestenbach, S. S. Campos and E. V. Morales: Mater. Sci. Tech., 2006, vol 22, № 6, pp. 615- 626.

    Article  Google Scholar 

  26. A.G. Kostryzhev, M. Strangwood, and C.L. Davis: Mater. Manuf. Process., 2010, vol. 25, № 1-3, pp. 41 – 47.

    Article  Google Scholar 

  27. A.G. Kostryzhev, A. Al Shahrani, C. Zhu, S. P. Ringer and E. V. Pereloma: Mater. Sci. Eng. A, 2013, vol. 581, pp. 16-25.

    Article  Google Scholar 

  28. D.T. Llewellyn, R.C. Hudd, Steels: Metallurgy and Application, Butterworth-Heinemann, Oxford, 1998.

    Google Scholar 

  29. B. Dutta, E.J. Palmiere and C. M. Sellars: Acta Mater., 2001, vol. 49, pp. 785-794.

    Article  Google Scholar 

  30. S. G. Hong, K.B. Kang and C.G. Park: Scripta Mater., 2002, vol. 46, pp. 163-168.

    Article  Google Scholar 

  31. E.V. Pereloma, A.G. Kostryzhev, A. AlShahrani, C. Zhu, J.M. Cairney, C.R. Killmore and S.P. Ringer: Scripta Mater., 2014, vol. 75, pp. 74 – 77.

    Article  Google Scholar 

  32. A. Shahrani, T. Schambron, A. Dehghan-Manshadi, J. Williams, E. Pereloma: Mater. Sci. Forum, 2010, vol. 654-656, pp. 298 - 301.

    Article  Google Scholar 

  33. A.G. Kostryzhev, M. Strangwood, and C.L. Davis: Metall. Mater. Trans. A, 2010, vol. 42, № 10, pp. 3170 – 3177.

    Google Scholar 

  34. I.B. Timokhina, P.D. Hodgson, and E.V. Pereloma: Metall. Mater. Trans. A, 2007, vol. 38, pp. 2442-2454.

    Article  Google Scholar 

  35. D. Akama, N. Nakada, T. Tsuchiyama, S. Takaki, A. Hironaka: Scripta Mater., 2014, vol. 82, pp. 13 – 16.

    Article  Google Scholar 

  36. Y. W. Kim, J. H. Kim, S.-G. Hong, C. S. Lee: Mater. Sci. Eng. A, 2014, vol. 605, pp. 244–252.

    Article  Google Scholar 

  37. H.G. Hillenbrand, E. Amoris, K.A. Niederhoff, C. Perdrix, A. Streißelberger, and U. Zeislmair: EUROPIPE, GmbH, www.europipe.de, 1995.

  38. I. B. Timokhina, M. Enomoto, M.K. Miller, and E.V. Pereloma: Metall. Mater. Trans. A, 2012, vol. 43 (7), pp. 2473-2483.

    Article  Google Scholar 

  39. D.J. Dingly and D. McLean: Acta Metall., 1967, vol. 15, pp. 885 – 901.

    Article  Google Scholar 

  40. Q. Yu, Z. Wang, X. Liu, G. Wang: Mater. Sci. Eng. A, 2004, vol. 379, pp. 384–390.

    Article  Google Scholar 

  41. E. C. Bain, H. W. Paxton: Alloying Elements in Steel, American Society for Metals, Metals Park, OH, 1961.

    Google Scholar 

  42. G.K. Tirumalasetty, M.A. van Huis, C.M. Fang, Q. Xu, F.D. Tichelaar, D.N. Hanlon, J. Sietsma, H.W. Zandbergen: Acta Mater., 2011, vol. 59, pp. 7406–7415.

    Article  Google Scholar 

  43. E. Courtois, T. Epicier, C. Scott: Micron, 2006, vol. 37, pp. 492–502.

    Article  Google Scholar 

  44. D.H.R. Fors and G. Wahnström: Phys. Rev. B, 2010, vol. 82, paper 195410.

  45. E.V. Morales, J. Gallego, H.-J. Kestenbach: Phil. Mag. Lett., 2003, vol. 83, pp. 79–87.

    Article  Google Scholar 

  46. D. N. Seidman, E. A. Marquis, D. C. Dunand: Acta Mater., 2002, vol. 50, pp. 4021–4035.

    Article  Google Scholar 

  47. A.S. Argon: in Mechanical Properties of Single-Phase Crystalline Media: Deformation at Low Temperature, R.W. Cahn and P. Haasen, eds., Physical Metallurgy, North-Holland Publishing, Amsterdam, 1996.

  48. S.H. Hashemi: Mater. Sci. Eng. A, 2011, vol. 528, pp. 1648–1655.

    Article  Google Scholar 

  49. W.K. Kim, H.G. Jung, G.T. Park, S.U. Koh, K.Y. Kim: Scripta Mater., 2010, vol. 62, pp. 195 – 198.

    Article  Google Scholar 

  50. T.A. Kals, R. Eckestein: J. Mater. Process. Tech., 2000, vol. 103, pp. 95 – 101.

    Article  Google Scholar 

  51. Y.H. Zhao, Y.Z. Guo, Q. Wei, A.M. Dangelewicz, C. Xu, Y.T. Zhu, T.G. Langdon, Y.Z. Zhou and E.J. Lavernia: Scripta Mater., 2008, vol. 59, pp. 627 – 630.

    Article  Google Scholar 

  52. T.N. Goh and H.M. Shang: J. Mech. Work. Technol., 1982, vol. 7, pp. 23-37.

    Article  Google Scholar 

  53. He Kejian,T. N. Baker: Mater. Sci. Eng. A 169 (1993) 53-65.

    Article  Google Scholar 

  54. A.G. Kostryzhev: Ph.D. Thesis, University of Birmingham, 2009, http://etheses.bham.ac.uk/436/.

  55. M. Charleux, W.J.Poole, M. Militzer, A. Deschamps: Metall. Mater. Trans. A 32 (2001) 1635 - 1647.

    Article  Google Scholar 

  56. H-L. Yi, L-X. Du, G-D. Wang, X-H. Liu: J. Iron Steel Res. Int., 2008, vol. 15(2), pp. 76-80.

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the Australian Research Council and BlueScope Steel for financial support of the project (LP110100231). Scanning and transmission electron microscopy were carried out using JEOL JSM-7001F FEGSEM (LE0882813) and JEOL JEM-2011 TEM (LE0237478) microscopes at the Electron Microscopy Centre at the University of Wollongong.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrii G. Kostryzhev.

Additional information

Manuscript submitted February 4, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kostryzhev, A.G., Marenych, O.O., Killmore, C.R. et al. Strengthening Mechanisms in Thermomechanically Processed NbTi-Microalloyed Steel. Metall Mater Trans A 46, 3470–3480 (2015). https://doi.org/10.1007/s11661-015-2969-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-015-2969-2

Keywords

Navigation