Skip to main content
Log in

Microstructural Analysis and the Multicolor UV/Violet/Blue/Green/Yellow PL Observed from the Synthesized ZnO Nano-leaves and Nano-rods

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

We report the synthesis of zinc oxide (ZnO) nano-leaves and nano-rods under high and extremely high alkaline experimental conditions, via a simple and low-temperature method. By performing transmission electron microscopy it is found that the nano-leaves and nano-rods grow along the (001) direction. Anisotropic, i.e., hkl-dependent line-shape broadening is observed in ZnO powder diffraction patterns. Rietveld analysis using Fullprof with model for handling the anisotropic size-like broadening is performed on these diffraction patterns. The refinement showed that ZnO powders belong to the hexagonal ZnS structure type with space group P63mc, and confirmed that the nano-leaves and nano-rods are oriented along the (001) direction. Results of visualization in 3D of the average crystallite shape obtained from refinement of spherical harmonics coefficients showed elongated shapes in the both samples, exhibiting a slight twisting for nano-leaves. Diffuse reflectance measurements reveal that the optical band-gap energies found for the ZnO nano-leaves and nano-rods is somewhat smaller than a wide-direct band gap of 3.37 eV. We argued that well defined and strong photoluminescence (PL) bands in the visible part that belong to the defects may influence the observed displacement of a ultraviolet (UV) near-band-edge emission, and which is related with obtained slightly lower band-gap energies than the established band gap of bulk ZnO. We discuss processes behind the multicolor UV/violet/blue/green/yellow emission band in PL spectra.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. U. Ozgur, Y.I. Alivov, C. Liu, A. Teke, M.A. Rechchikov, S. Dogan, V. Avrutin, S.J. Cho, and H. Morkoc: J. Appl. Phys., 2005, vol. 98, art. id. 041301.

  2. X. Zhang, L. Wang and G. Zhou: Rev. Adv. Mater. Sci., 2005, vol.10, pp.69-72.

    Google Scholar 

  3. W. I. Park, G. C. Yi, M. Kin and S. J. Pennycook: Adv. Mater., 2003, vol.15, pp.526-529.

    Article  Google Scholar 

  4. P. Li, Y. Wei, H. Liu and X. Wang: Chem. Commun., 2004, 10, pp. 2856-2857.

    Article  Google Scholar 

  5. J. H. He, C. H. Ho, C. W. Wang, Y. Ding, L. J. Chen and Z. L. Wang: Cryst. Growth Des., 2009, vol.9, pp.17-19.

    Article  Google Scholar 

  6. S.N. Cha, J.E. Jang, Y. Choi, G.A.J. Amaratunga, G.W. Ho, M.E. Welland, D.G. Hasko, D.J. Kang, and J.M. Kim: Appl. Phys. Lett., 2006, vol. 89, art. id. 263102.

  7. P.C. Chang, Z. Fan, C.J. Chien, D. Ronning, C. Stichenoth, and J.G. Lu: Appl. Phys. Lett., 2006, vol. 89, art. id. 133113.

  8. J. Bao, M. A. Zimmler and F. Capasso: Nano Lett., 2006, vol. 6, pp. 1719-1722.

    Article  Google Scholar 

  9. J. Huang and Q. Wan: Sensors, 2009, vol. 9, pp. 9903-9924.

    Article  Google Scholar 

  10. T.J. Hsueh, S.J. Chang, C.L. Hsu, Y.R. Lin, and I.C. Chen: Appl. Phys. Lett., 2007, vol. 91, art. id. 053111.

  11. P. C. Chen, G. Shen and C. Zhou: IEEE Trans. Nanotechnol., 2008, vol.7, pp. 668-682.

    Article  Google Scholar 

  12. T. Rakshit, S. Santra, I. Manna and S. K. Ray: RSC Adv., 2014, vol.4, pp. 36749-36756.

    Article  Google Scholar 

  13. Z. Fan, P. Chang, E. C. Walter, C. Lin, H. P. Lee, R. M. Penner and J. G. Lu: Appl. Phys. Lett., 2004, vol. 85, pp. 6128-6130.

    Article  Google Scholar 

  14. C. Soci, A. Zhang, X. Y. Bao, K. Kim, Y. Lo and D. Wang: J. Nanosci. Nanotechnol., 2010, vol. 10, pp. 1430-1449.

    Article  Google Scholar 

  15. H. Kind, H. Yan, B. Messer, M. Law and P. Yang: Adv. Mater., 2002, vol.14, pp. 158-160.

    Article  Google Scholar 

  16. S. W. Chan, R. J. Barille, M. Nunzi, K. H. Tam, Y. H. Leung, W. K. Chan and A. B. Djurisic: Appl. Phys. B, 2006, vol. 84, pp. 351-355.

    Article  Google Scholar 

  17. C.H. Ku and J.J. Wu: Appl. Phys. Lett., 2007, vol. 91, art. id. 093117.

  18. T. Rakshit, S. P. Mondal, I. Manna and S. K. Ray: ACS Appl. Mater. Interfaces, 2012, vol. 4, pp. 6085-6095.

    Article  Google Scholar 

  19. J. H. He, S. Singamaneni, C. H. Ho, Y. H. Lin, M. E. McConney and V. V. Tsukruk: Nanotechnology, 2009, vol. 20, pp. 065502-065506.

    Article  Google Scholar 

  20. Z. Zhao, W. Lei, X. Zhang, B. Wang and H. Jiang: Sensors, 2010, vol. 10, pp. 1216-1231.

    Article  Google Scholar 

  21. T. Rakshit, S. Mandal, P. Mishra, A. Dhar, I. Manna and S. K. Ray: J. Nanosci. Nanotechnol., 2012, vol. 12, pp. 308-315.

    Article  Google Scholar 

  22. M. Yilmaz and Ş. Aydoğan: Metall. Mater. Trans. A, 2015, vol. 46A, pp. 2726-2735.

    Article  Google Scholar 

  23. Y. G. Wang, S. P. Lau, H. W. Lee, S. F. Yu, B. K. Tay, X. H. Zhang and H. H. Hng: J. Appl. Phys., 2003, vol.94, pp.354-358.

    Article  Google Scholar 

  24. C. Wu, X. Qiao, J. Chen, H. Wang, F. Tan and S. Li: Mater. Lett., 2006, vol.60, pp.1828-1832.

    Article  Google Scholar 

  25. Z. Wang, B. Huang, X. Liu, X. Qin, X. Zhang, J. Wei, P. Wang, S. Yao, Q. Zhang and X. Jing: Mater. Lett., 2008, vol.62, pp.2637-2639.

    Article  Google Scholar 

  26. A. B. Djurišić and Y. H. Leung: Small, 2006, vol.2, pp.944-961.

    Article  Google Scholar 

  27. F. Güell, J.O. Ossó, A.R. Goni, A. Cornet, and J.R. Morante: Nanotechnology, vol. 20, art. id. 315701.

  28. F. Güell, J. O. Ossó, A. R. Goni, A. Cornet and J. R. Morante: Superlattice Microstruct., 2009, vol.45, pp.271-276.

    Article  Google Scholar 

  29. J. Fan, F. Güell, C. Fábrega, A. Fairbrother, T. Andreu, A. M. López, J. R. Morante and A. Cabot: J. Phys. Chem. C, 2012, vol.116, pp.19496-19502.

    Article  Google Scholar 

  30. C.H. Ahn, Y.Y. Kim, D.C. Kim, S.K. Mohanta, and H.K. Cho: J. Appl. Phys., 2009, vol. 105, art. id. 013502.

  31. J. I. Langfordy and D. Louer: Rep. Prog. Phys., 1996, vol.59, pp.131-234.

    Article  Google Scholar 

  32. I. Lj. Validžić, T. D. Savić, R. M. Krsmanović, D. J. Jovanović, M. M. Novaković, M. Č. Popović and M. I. Čomor: Mater. Sci. Eng. B, 2012, vol.177, pp.645-651.

    Article  Google Scholar 

  33. J. Rodríguez-Carvajal: Commission on Powder Diffraction, IUCr, Newsletter 26, December, 2001.

  34. J. Rodríguez-Carvajal: Study of Micro-Structural Effects by Powder Diffraction Using the Program FULLPROF. http://www.cdifx.univ-rennes1.fr/fps/Microstructural_effects.pdf.

  35. V.K. Pecharsky and P.Y. Zavalij: Fundamentals of Powder Diffraction and Structural Characterization of Materials, Chapter 3, Springer, Berlin, 2005.

  36. S. Baruah and J. Dutta: Sci. Technol. Adv. Mater., 2009, vol. 10, art. id. 013001.

  37. A. Sugunan, H. C. Warad, M. Boman and J. Dutta: J. Sol-Gel Sci. Techn., 2006, vol. 39, pp. 49-56.

    Article  Google Scholar 

  38. C. H. Lu and C. H. Yeh: Ceram. Int., 2000, vol. 26, pp. 351-357.

    Article  Google Scholar 

  39. N. C. Popa and D. Balzar: J. Appl. Cryst., 2008, vol.41, pp.615-627.

    Article  Google Scholar 

  40. G. Kortum: Reflectance spectroscopy, Springer-Verlag, New York, 1966.

    Google Scholar 

  41. J. I. Pankove: Optical process in semiconductors, Dover, New York, 1971.

    Google Scholar 

  42. S. F. Wei, J. S. Lian and Q. Jiang: Appl. Surf. Sci., 2009, vol.255, pp.6978-6984.

    Article  Google Scholar 

  43. S. Vempati, J. Mitra and P. Dawson: Nanoscale Res. Lett., 2012, vol.7, pp.470.

    Article  Google Scholar 

  44. Z.W. Liu, C.K. Ong, T. Yu, and Z.X. Shen: Appl. Phys. Lett., 2006, vol. 88, art. id. 053110.

  45. H. Zeng, G. Duan, Y. Li, S. Yang, X. Xu and W. Cai: Adv. Funct. Mater., 2010, vol.20, pp.561-572.

    Article  Google Scholar 

  46. S. K. Mishra, R. K. Srivastava and S. G. Prakash: J. All. Com., 2012, vol.539, pp.1-6.

    Article  Google Scholar 

  47. N. Bano, I. Hussain, O. Nur, M. Willander, P. Klason and A. Henry: Semicond. Sci. Technol., 2009, vol.24, pp.125015.

    Article  Google Scholar 

  48. B.X. Lin, Z.X. Fu, and Y.B. Jia: Appl. Phys. Lett., 2001, vol. 79, art. id. 943.

  49. X.L. Wu, G.G. Siu, C.L. Fu, and H.C. Ong: Appl. Phys. Lett., 2001, vol. 78, art. id. 2285.

  50. S. K. Mishra, R. K. Srivastava, S. G. Prakash, R. S. Yadav and A. C. Pandey: Opto-Electron. Rev., 2010, vol.18, pp.467-473.

    Article  Google Scholar 

  51. J. Zhang, L. D. Sun, J. L. Yin, H. L. Su, C. S. Liao and C. H. Yan: Chem. Mater., 2002, vol.14, pp.4172-4177.

    Article  Google Scholar 

  52. M. Rajalakshmi, S. Sohila, S. Ramya, R. Divakar, C. Ghosh and S. Kalavathi: J. Opt. Mat., 2012, vol.34, pp.1241-1245.

    Article  Google Scholar 

  53. J. C. Moore, L. R. Covington and R. Stansell: Phys. Status Solidi A, 2012, vol.209, pp.741-745.

    Article  Google Scholar 

  54. T.M. Borseth, P. Klason, Q.X. Zhao, M. Willander, B.G. Svensson, and A.Y. Kuznetsov: Appl. Phys. Lett., 2006, vol. 89, art. id. 262112.

  55. Y. Zhang, W. Zhang and H. Zheng: Scripta Mat., 2007, vol.57, pp.313-316.

    Article  Google Scholar 

  56. F. H. Leiter, H. Alves, D. Pfisterer, N. G. Romanov, D. M. Hofmann and B. K. Meyer: Physica B, 2003, vol.340-342, pp.201-204.

    Article  Google Scholar 

  57. K. Vanheusden, C. H. Seager, W. L. Warren, D. R. Tallant and J. A. Voigt: Appl. Phys. Lett., 1996, vol.68, pp.403.

    Article  Google Scholar 

  58. S. H. Jeong, B. S. Kim and B. T. Lee: Appl. Phys. Lett., 2003, vol.82, pp.2625.

    Article  Google Scholar 

  59. F.K. Shan, G.X. Liu, W.J. Lee, G.H. Lee, I.S. Kim, and B.C. Shin: Appl. Phys. Lett., 2005, vol. 86, art. id. 221910.

  60. S. Pati, S. B. Majumder and P. Banerji: J. All. Com., 2012, vol.541, pp.376-379.

    Article  Google Scholar 

  61. P. Klason, T. M. Borseth, Q. X. Zhao, B. G. Svensson, A. Y. Kuznetsov, P. J. Bergman and M. Willander: Solid State Commun., 2008, vol.145, pp.321-326.

    Article  Google Scholar 

Download references

Acknowledgments

Financial support for this study was granted by the Ministry of Science and Technological Development of the Republic of Serbia (Projects 172056 and 45015).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivana Lj. Validžić.

Additional information

Manuscript submitted July 11, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Validžić, I.L., Mitrić, M., Ahrenkiel, S.P. et al. Microstructural Analysis and the Multicolor UV/Violet/Blue/Green/Yellow PL Observed from the Synthesized ZnO Nano-leaves and Nano-rods. Metall Mater Trans A 46, 3679–3686 (2015). https://doi.org/10.1007/s11661-015-2961-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-015-2961-x

Keywords

Navigation