Skip to main content
Log in

Surface Nanocrystallization and Numerical Modeling of Low Carbon Steel by Means of Ultrasonic Shot Peening

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Surface nanocrystallization of AISI-1018 steel was successfully realized by ultrasonic shot peening (USSP). The fabricated nanocrystalline surface layer was observed and characterized by means of scanning electron microscope and transmission electron microscope. Experimental evidence indicates that after USSP, the initial coarse-grained structure (~20 µm) at the top surface layer was refined into ultrafine grains with random crystallographic orientation and the elongated grains were observed at the sub-surface layer. Nanograins (~100 nm) and nanocrystalline surface layer with the thickness of 1 µm were fabricated after USSP treatment of 20 minutes. By increasing the USSP treatment duration to 60 minutes, nanograins in the size of 20 nm and nanocrystalline surface layer with the thickness of not less than 10 µm were generated. To predict the generation of nanostructured surface layer by plastic strain, an analytical algorithm cooperating with finite element method was proposed to simulate the strain distribution and surface topography of the peened surface during USSP. The proposed algorithm was verified and the simulation results show a reasonable agreement with the experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. S. Tjong and H. Chen, Mater. Sci. Eng., R 2004, vol. 45, pp. 1-88.

    Article  Google Scholar 

  2. K. Kumar, H. Van Swygenhoven and S. Suresh, Acta Mater. 2003, vol. 51, pp. 5743-5774.

    Article  Google Scholar 

  3. I. Manna and J. Dutta Majumdar, J. Mater. Sci. Lett. 1993, vol. 12, pp. 920-922.

    Article  Google Scholar 

  4. X. Liu, H. Zhang and K. Lu, Sci. 2013, vol. 342, pp. 337-340.

    Article  Google Scholar 

  5. R.Z. Valiev, Y. Estrin, Z. Horita, T.G. Langdon, M.J. Zechetbauer and Y.T. Zhu, Nanostruct. Mater. 2006, vol. 58, pp. 33-39.

    Google Scholar 

  6. Y.-h. Wei, B.-s. Liu, L.-f. Hou, B.-s. Xu and G. Liu, J. Alloys Compd. 2008, vol. 452, pp. 336-342.

    Article  Google Scholar 

  7. N. Tao, Z. Wang, W. Tong, M. Sui, J. Lu and K. Lu, Acta Mater. 2002, vol. 50, pp. 4603-4616.

    Article  Google Scholar 

  8. T. He, Y. Xiong, F. Ren, Z. Guo and A.A. Volinsky, Mater. Sci. Eng.: A 2012, vol. 535, pp. 306-310.

    Article  Google Scholar 

  9. B. Hwang, S. Lee, Y.C. Kim, N.J. Kim and D.H. Shin, Mater. Sci. Eng.: A 2006, vol. 441, pp. 308-320.

    Article  Google Scholar 

  10. D. Hughes and N. Hansen, Phys. Rev. Lett. 2001, vol. 87, p. 135503.

    Article  Google Scholar 

  11. P. Chattopadhyay, I. Manna, S. Talapatra and S. Pabi, Mater. Chem. Phy. 2001, vol. 68, pp. 85-94.

    Article  Google Scholar 

  12. W. Li, N. Tao and K. Lu, Scripta Mater. 2008, vol. 59, pp. 546-549.

    Article  Google Scholar 

  13. L. Zhou, G. Liu, X. Ma and K. Lu, Acta Mater. 2008, vol. 56, pp. 78-87.

    Article  Google Scholar 

  14. X. Wu, N. Tao, Q. Wei, P. Jiang, J. Lu and K. Lu, Acta Mater. 2007, vol. 55, pp. 5768-5779.

    Article  Google Scholar 

  15. Y. Todaka, M. Umemoto and K. Tsuchiya, Mater. Trans. 2004, vol. 45, pp. 376-379.

    Article  Google Scholar 

  16. T. Wang, J. Yu and B. Dong, Surf. Coat. Technol. 2006, vol. 200, pp. 4777-4781.

    Article  Google Scholar 

  17. M. Rakita, M. Wang, Q. Han, Y. Liu and F. Yin, Int. J. Comput. Mater. Sci. Surf. Eng. 2013, vol. 5, pp. 189-209.

    Google Scholar 

  18. N. Tao, M. Sui, J. Lu and K. Lua, Nanostruct. Mater. 1999, vol. 11, pp. 433-440.

    Article  Google Scholar 

  19. G. Liu, J. Lu and K. Lu, Mater. Sci. Eng.: A 2000, vol. 286, pp. 91-95.

    Article  Google Scholar 

  20. H. Zhang, Z. Hei, G. Liu, J. Lu and K. Lu, Acta Mater. 2003, vol. 51, pp. 1871-1881.

    Article  Google Scholar 

  21. K. Wang, N. Tao, G. Liu, J. Lu and K. Lu, Acta Mater. 2006, vol. 54, pp. 5281-5291.

    Article  Google Scholar 

  22. S. Bagherifard, R. Ghelichi and M. Guagliano, Surf. Coat. Technol. 2010, vol. 204, pp. 4081-4090.

    Article  Google Scholar 

  23. L.A. Giannuzzi, J.L. Drown, S.R. Brown, R.B. Irwin and F.A. Stevie, Microsc. Res. Tech. 1998, vol. 41, pp. 285-290.

    Article  Google Scholar 

  24. K.A.S. Hibbitt: Abaqus 6.4User’s Manual, 2005.

  25. I. MathWorks: MATLAB: The Language of Technical Computing. Desktop Tools and Development Environment, Version 7, MathWorks, 2005.

  26. F. Yin, L. Hua, X. Wang, M. Rakita and Q. Han, Comput. Mater. Sci. 2014, vol. 92, pp. 28-35.

    Article  Google Scholar 

  27. A. Bower and K. Johnson, J. Mech. Phys. Solids 1989, vol. 37, pp. 471-493.

    Article  Google Scholar 

  28. F. Auricchio and R.L. Taylor, Int. J. Plast. 1995, vol. 11, pp. 65-98.

    Article  Google Scholar 

  29. A. Bower, J. Mech. Phys. Solids 1989, vol. 37, pp. 455-470.

    Article  Google Scholar 

  30. K. Dai, J. Villegas and L. Shaw, Scripta Mater. 2005, vol. 52, pp. 259-263.

    Article  Google Scholar 

  31. K. Dai, J. Villegas, Z. Stone and L. Shaw, Acta Mater. 2004, vol. 52, pp. 5771-5782.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Center for Technology Development at Purdue University and China Scholarship Council. The authors would like to gratefully acknowledge their supports.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingyou Han.

Additional information

Manuscript submitted March 28, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, F., Hu, S., Hua, L. et al. Surface Nanocrystallization and Numerical Modeling of Low Carbon Steel by Means of Ultrasonic Shot Peening. Metall Mater Trans A 46, 1253–1261 (2015). https://doi.org/10.1007/s11661-014-2689-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-014-2689-z

Keywords

Navigation