Skip to main content
Log in

The Influence of the Effect of Solute on the Thermodynamic Driving Force on Grain Refinement of Al Alloys

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Grain refinement is known to be strongly affected by the solute in cast alloys. Addition of some solute can reduce grain size considerably while others have a limited effect. This is usually attributed to the constitutional supercooling which is quantified by the growth restriction factor, Q. However, one factor that has not been considered is whether different solutes have differing effects on the thermodynamic driving force for solidification. This paper reveals that addition of solute reduces the driving force for solidification for a given undercooling, and that for a particular Q value, it is reduced more substantially when adding eutectic-forming solutes than peritectic-forming elements. Therefore, compared with the eutectic-forming solutes, addition of peritectic-forming solutes into Al alloys not only possesses a higher initial nucleation rate resulted from the larger thermodynamic driving force for solidification, but also promotes nucleation within the constitutionally supercooled zone during growth. As subsequent nucleation can occur at smaller constitutional supercoolings for peritectic-forming elements, a smaller grain size is thus produced. The very small constitutional supercooling required to trigger subsequent nucleation in alloys containing Ti is considered as a major contributor to its extraordinary grain refining efficiency in cast Al alloys even without the deliberate addition of inoculants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. B.S. Murty, S.A. Kori, and M. Chakraborty: Inter. Mater. Rev., 2002, vol. 47, pp. 3–29.

    Article  Google Scholar 

  2. T.E. Quested: Mater. Sci. Technol., 2004, vol. 20, pp. 1357–69.

    Article  Google Scholar 

  3. A. Cibula: J. Inst. Met., 1951, vol. 80, pp. 1–16.

    Google Scholar 

  4. D.G. McCartney: Inter. Mater. Rev., 1989, vol. 34, pp. 247–60.

    Article  Google Scholar 

  5. M.M. Guzowski, G.K. Sigworth, and D.A. Sentner: Metall. Trans. A, 1987, vol. 18A, pp. 603–19.

    Article  Google Scholar 

  6. P.S. Mohanty and J.E. Gruzleski: Acta Metall. Mater., 1995, vol. 43, pp. 2001–12.

    Article  Google Scholar 

  7. M.A. Easton and D.H. StJohn: Metall. Mater. Trans. A, 1999, vol. 30A, pp. 1613–23.

    Article  Google Scholar 

  8. M.A. Easton and D.H. StJohn: Metall. Mater. Trans. A, 1999, vol. 30A, pp. 1625–33.

    Article  Google Scholar 

  9. A.L. Greer, P.S. Cooper, M.W. Meredith, W. Schneider, P. Schumacher, J.A. Spittle, and A. Tronche: Adv. Eng.Mater., 2003, vol. 5, pp. 81–91.

    Article  Google Scholar 

  10. M. Johnsson, L. Backerud, and G.K. Sigworth: Metall. Trans. A, 1993, vol. 24A, pp. 481–91.

    Article  Google Scholar 

  11. J.A.Marcantonio and L.F. Mondolfo: Metall. Trans., 1971, vol. 2, pp. 465–71.

    Article  Google Scholar 

  12. P. Schumacher and A.L. Greer: Eighth International Conference on Rapidly Quenched and Metastable Materials, 22–27 Aug, 1993, vol. A181–A182, Switzerland, 1994, pp. 1335–39.

  13. M.A. Easton and D.H. StJohn: Acta Mater., 2001, vol. 49, pp. 1867–78.

    Article  Google Scholar 

  14. D.H. StJohn, M. Qian, M.A. Easton, and P. Cao: Acta Mater., 2011, vol. 59, pp. 4907–21.

    Article  Google Scholar 

  15. M. Johnsson: Thermochim. Acta, 1995, vol. 256, pp. 107–21.

    Article  Google Scholar 

  16. M. Qian, P. Cao, M.A. Easton, S.D. McDonald, and D.H. StJohn: Acta Mater., 2010, vol. 58, pp. 3262–70.

    Article  Google Scholar 

  17. I. Maxwell and A. Hellawell: Acta Metall., 1975, vol. 23, pp. 229–37.

    Article  Google Scholar 

  18. M. Johnsson and L. Baeckerud: Z. Metallkd., 1996, vol. 87, pp. 216–20.

    Google Scholar 

  19. M.A. Easton and D.H. StJohn: Metall. Mater. Trans. A, 2005, vol. 36A, pp. 1911–20.

    Article  Google Scholar 

  20. M.A. Easton and D.H. StJohn: Mater. Sci. Eng. A, 2008, vol. 486, pp. 8–13.

    Article  Google Scholar 

  21. F. Wang, Z. Liu, D. Qiu, J.A. Taylor, M.A. Easton, and M.-X. Zhang: Acta Mater., 2013, vol. 61, pp. 360–70

    Article  Google Scholar 

  22. D.H. StJohn, P. Cao, M. Qian, and M.A. Easton: Adv. Eng. Mater., 2007, vol. 9, pp. 739–46.

    Article  Google Scholar 

  23. D.H. StJohn, Q. Ma, M.A. Easton, C. Peng, and Z. Hildebrand: Metall. Mater. Trans. A, 2005, vol. 36A, pp. 1669–79.

    Article  Google Scholar 

  24. M.J. Bermingham, S.D. McDonald, M.S. Dargusch, and D.H. St.John: J. Mater. Res., 2008, vol. 23, pp. 97–104.

    Article  Google Scholar 

  25. J.H. Perepezko and W.S. Tong: Nucleation Control, Royal Society, Cambridge, 2003, pp. 447–61.

    Google Scholar 

  26. H.L. Lukas, S.G. Fries, and B. Sundman: Computation Thermodynamics (The CALPHD Method), Cambridge University Press, New York, 2007.

  27. N. Saunders and A.P. Miodownik: CALPHAD (Calculation of Phase Diagrams): A Comprehensive Guide, Pergamon, Oxford; New York, 1998.

    Google Scholar 

  28. J.O. Andersson, T. Helander, L. Ho¨ glund, P. Shi, and B. Sundman: CALPHAD, 2002, vol. 26, pp. 273–312.

    Article  Google Scholar 

  29. S.L. Chen, Y. Zuo, H. Liang, and Y.A. Chang: Metall. Mater. Trans. A, 1997, vol. 28A, pp. 435–46.

    Article  Google Scholar 

  30. S.-W. Chen, Y.-Y. Chuang, Y. Austin Chang, and M. Chu: Metall. Trans. A, 1991, vol. 22A, pp. 2837–48.

    Article  Google Scholar 

  31. N. Saunders: CALPHAD, 1990, vol. 14, pp. 61–70.

    Article  Google Scholar 

  32. J. Grobner, D. Kevorkov, I. Chumak, and R. Schmid-Fetzer: Z. Metallkd., 2003, vol. 94, pp. 976–82.

    Article  Google Scholar 

  33. P. Liang, H.-L. Su, P. Donnadieu, M.G. Harmelin, A. Quivy, P. Ochin, G. Effenberg, H.J. Seifert, H.L. Lukas, and F. Aldinger: Z. Fuer Metallkunde/Mater. Res. Adv. Tech., 1998, vol. 89, pp. 536–40.

    Google Scholar 

  34. J. Grobner, H.L. Lukas, and F. Aldinger: CALPHAD, 1996, vol. 20, pp. 247–54.

    Article  Google Scholar 

  35. H. Feufel, T. Goedecke, H.L. Lukas, and F. Sommer: J. Alloys Compd., 1997, vol. 247, pp. 31–42.

    Article  Google Scholar 

  36. U.R. Kattner, J.C. Lin, and Y.A. Chang: Metall. Trans. A, 1992, vol. 23A, pp. 2081–90.

    Article  Google Scholar 

  37. I. Ohnuma, Y. Fujita, H. Mitsui, K. Ishikawa, R. Kainuma, and K. Ishida: Acta Mater., 2000, vol. 48, pp. 3113–23.

    Article  Google Scholar 

  38. V.T. Witusiewicz, A.A. Bondar, U. Hecht, S. Rex, and T.Y. Velikanova: J. Alloys Compd., 2008, vol. 465, pp. 64–77.

    Article  Google Scholar 

  39. N. Saunders and V.G. Rivlin: Mater. Sci. Technol., 1986, vol. 2, pp. 521–27.

    Google Scholar 

  40. T. Wang, Z. Jin, and J.C. Zhao: J. Phase Equilibria, 2001, vol. 22, pp. 544–51.

    Article  Google Scholar 

  41. I. Ansara, A.T. Dinsdale, and M.H. Rand, eds.: COST 507, European Communities, Belgium, 1998.

  42. A.T. Dinsdale: CALPHAD, 1991, vol. 15, pp. 317–425.

    Article  Google Scholar 

  43. W. Kurz and D.J. Fisher: Fundamentals of Solidification, Trans Tech Publications, Switzerland, 1998.

    Google Scholar 

  44. D.A. Porter, K. Easterling, and M.Y. Sherif: Phase Transformations in Metals and Alloys, CRC Press, Boca Raton, FL, 2009.

    Google Scholar 

  45. J.A. Dantzig and M. Rappaz: Solidification, EPFL Press, Lausanne, 2009.

    Book  Google Scholar 

  46. H. Fredriksson and U. Åkerlind: Thermodynamic Analysis of Solidification Processes in Metals and Alloys. Solidification and Crystallization Processing in Metals and Alloys. Wiley, New York, 2012, pp. 42–98.

    Book  Google Scholar 

  47. M. Glicksman: Thermodynamics of Crystal-Melt Phase Change. Principles of Solidification, Springer, New York, 2011, pp. 27–51.

    Google Scholar 

  48. E Clouet: Modeling of Nucleation Processes. Fundamentals of Modeling for Metals Processing, ASM International, Brussels, 2009, vol. 22A, pp. 203–19.

    Google Scholar 

  49. M.D. Eborall: J. Inst. Met., 1949, vol. 76, pp. 295–320.

    Google Scholar 

  50. F. Wang, D. Qiu, Z.-L. Liu, J.A. Taylor, M.A. Easton, and M.-X. Zhang: Acta Mater., 2013, vol. 61, pp. 5636–45.

    Article  Google Scholar 

  51. F. Wang, D. Qiu, Z.-L. Liu, J.A. Taylor, M.A. Easton, and M.-X. Zhang: J. Appl. Crystallogr., 2014, vol. 47, pp. 770–79.

    Article  Google Scholar 

  52. J.A. Spittle and S. Sadli: Mater. Sci. Technol., 1995, vol. 11, p. 533.

    Article  Google Scholar 

  53. N. Eustathopoulos: Int. Met. Rev., 1983, vol. 28, pp. 189–210.

    Article  Google Scholar 

  54. L. Battezzati: RQ10, Tenth International Conference on Rapidly Quenched and Metastable Materials, 23–27 Aug. 1999, Elsevier, Switzerland, 2001, vol. A304-A306, pp. 103–21.

    Google Scholar 

  55. M. Gunduz and J.D. Hunt: Acta Metall., 1985, vol. 33, 679 pp. 1651–72.

    Article  Google Scholar 

  56. N. Marasli and J.D. Hunt: Acta Mater., 1996, vol. 44, pp. 1085–96.

    Article  Google Scholar 

  57. M. Gunduz and J.D. Hunt: Acta Metall., 1989, vol. 37, p. 1839–45.

    Article  Google Scholar 

  58. K. Keslioglu, M. Gunduz, H. Kaya, and E. Cadirli: Mater. Lett., 2004, vol. 58, pp. 3067–73.

    Article  Google Scholar 

  59. S. Engin, U. Boyuk, and N. Marasli: J. Alloys Compd., 2009, vol. 488, pp. 138–43.

    Article  Google Scholar 

Download references

Acknowledgments

The authors are very grateful to the Australian Research Council for funding support (ARC DP10955737). Feng Wang would also like to acknowledge the support of China Scholarship Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming-Xing Zhang.

Additional information

Manuscript submitted December 1, 2013.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, F., Liu, ZL., Qiu, D. et al. The Influence of the Effect of Solute on the Thermodynamic Driving Force on Grain Refinement of Al Alloys. Metall Mater Trans A 46, 505–515 (2015). https://doi.org/10.1007/s11661-014-2599-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-014-2599-0

Keywords

Navigation