Skip to main content
Log in

Asymmetric Rolling of Interstitial-Free Steel Using Differential Roll Diameters. Part I: Mechanical Properties and Deformation Textures

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

IF steel sheets were processed by conventional symmetric and asymmetric rolling (ASR) at ambient temperature. The asymmetry was introduced in a geometric way using differential roll diameters with a number of different ratios. The material strength was measured by tensile testing and the microstructure was analyzed by optical and transmission electron microscopy as well as electron backscatter diffraction (EBSD) analysis. Texture was also successfully measured by EBSD using large surface areas. Finite element (FE) simulations were carried out for multiple passes to obtain the strain distribution after rolling. From the FE results, the velocity gradient along selected flow lines was extracted and the evolution of the texture was simulated using polycrystal plasticity modeling. The best mechanical properties were obtained after ASR using a roll diameter ratio of 2. The textures appeared to be tilted up to 12 deg around the transverse direction, which were simulated with the FE-combined polycrystal plasticity modeling in good agreement with measurements. The simulation work revealed that the shear component introduced by ASR was about the same magnitude as the normal component of the rolling strain tensor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Y. B. Park, L. Kestens, and J. J. Jonas: ISIJ Int., 2000, vol. 40, no. 4, pp. 393-401.

    Article  CAS  Google Scholar 

  2. K. Ushioda, S. Takebayashi, and Y. R. Abe: Materials and Manufacturing Processes, 2010/03/22, 2010, vol. 25, no. 1-3, pp. 185-194.

    Article  CAS  Google Scholar 

  3. R. Saha, and R. K. Ray: ISIJ Int., 2008, vol. 48, no. 7, pp. 976-983.

    Article  CAS  Google Scholar 

  4. R. Z. Valiev, Y. Estrin, Z. Horita, T. G. Langdon, M. J. Zehetbauer, and Y. T. Zhu: JOM, April 2006, 2006, vol. 58, no. 4, pp. 33-39.

    Google Scholar 

  5. J.-K. Kim, Y.-K. Jee, M.-Y. Huh, and H.-T. Jeong: J. Mater. Sci., 2004, vol. 39, no. 16, pp. 5365-5369.

    Article  CAS  Google Scholar 

  6. T. Gow-Yi: J. Mater. Process. Tech., 1998, vol. 86, no. 13, pp. 271-277.

    Article  Google Scholar 

  7. H. Jin, and D. J. Lloyd: Mat. Sci. Eng. A, 2007, vol. 465, no. 12, pp. 267-273.

    Article  Google Scholar 

  8. H. Utsunomiya, T. Ueno, and T. Sakai: Scripta Mater., 2007, vol. 57, no. 12, pp. 1109-1112.

    Article  CAS  Google Scholar 

  9. T. Sakai, K. Yoneda, and S. Osugi: Mater. Sci. Forum., 2005, vol. 495-497, pp. 597-602.

    Article  Google Scholar 

  10. R. Lapovok, L. S. Tóth, M. Winkler, and S. L. Semiatin: J. Mater. Res., 2009, vol. 24, no. 2, pp. 459-469.

    Article  CAS  Google Scholar 

  11. D. Orlov, R. Lapovok, L. S. Tóth, I. B. Timokhina, P. D. Hodgson, D. Bhattacharjee, and A. Haldar: Mater. Sci. Forum., June, 2010, 2010, vol. 654-656, pp. 1255-1258.

    Article  Google Scholar 

  12. L. S. Tóth, B. Beausir, D. Orlov, R. Lapovok, and A. Haldar: J. Mater. Process. Tech., February 2012, 2012, vol. 212, no. 2, pp. 509-515.

    Article  Google Scholar 

  13. R. Lapovok, D. Orlov, I. B. Timokhina, A. Pougis, L. S. Tóth, P. D. Hodgson, A. Haldar, and D. Bhattacharjee: Metall. Mater. Trans. A, 2012, vol. 43, no. 4, pp. 1328-1340.

    Article  Google Scholar 

  14. D. Orlov, R. Lapovok, L. S. Tóth, I. B. Timokhina, P. D. Hodgson, D. Bhattacharjee, and A. Haldar: Mater. Sci. Forum., 2012, vol. 706 - 709, pp. 2788-2793.

    Article  Google Scholar 

  15. D. Orlov, Y. Todaka, M. Umemoto, and N. Tsuji: Mat. Sci. Eng. A, 15 January 2009, 2009, vol. 499, no. 1-2, pp. 427433.

    Article  Google Scholar 

  16. D. Orlov, Y. Todaka, M. Umemoto, and N. Tsuji: Scripta Mater., 2011, vol. 64, no. 6, pp. 498-501.

    Article  CAS  Google Scholar 

  17. D. Orlov, P. P. Bhattacharjee, Y. Todaka, M. Umemoto, and N. Tsuji: Scripta Mater., 2009, vol. 60, no. 10, pp. 893-896.

    Article  CAS  Google Scholar 

  18. D. Orlov, R. Lapovok, L.S. Tóth, I.B. Timokhina, P. D. Hodgson, A. Haldar, and D. Bhattacharjee: Metall. Mater. Trans. A, 2012, under review.

  19. B. Hutchinson: Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, June 15, 1999, 1999, vol. 357, no. 1756, pp. 1471-1485.

    Article  CAS  Google Scholar 

  20. B. L. Li, A. Godfrey, Q. C. Meng, Q. Liu, and N. Hansen: Acta Mater., 2004, vol. 52, no. 4, pp. 1069-1081.

    Article  Google Scholar 

  21. N. Tsuji, N. Kamikawa, R. Ueji, N. Takata, H. Koyama, and D. Terada: ISIJ Int., May 8, 2008, 2008, vol. 48, no. 8, pp. 1114-1121.

    Article  CAS  Google Scholar 

  22. O. Saray, G. Purcek, I. Karaman, T. Neindorf, and H. J. Maier: Mat. Sci. Eng. A, 2011, vol. 528, no. 21, pp. 6573-6583.

    Article  CAS  Google Scholar 

  23. D. Vanderschueren, N. Yoshinaga, and K. Koyama: ISIJ Int., 1996/08/15, 1996, vol. 36, no. 8, pp. 1046-1054.

    Article  CAS  Google Scholar 

  24. L. Tóth, J. Jonas, D. Daniel, and R. Ray: Metall. Trans. A, 1990, vol. 21, no. 11, pp. 2985-3000.

    Google Scholar 

  25. L. S. Tóth, Y. Estrin, R. Lapovok, and C. Gu: Acta Mater., 2010, vol. 58, no. 5, pp. 1782-1794.

    Article  Google Scholar 

  26. S. H. Lee, and D. N. Lee: Int. J. Mech. Sci., 2001, vol. 43, no. 9, pp. 1997-2015.

    Article  Google Scholar 

  27. J. Sidor, A. Miroux, R. Petrov, and L. Kestens: Acta Mater., 2008, vol. 56, no. 11, pp. 2495-2507.

    Article  CAS  Google Scholar 

  28. K.-M. Lee, and H.-C. Lee: J. Mater. Process. Tech., 2010, vol. 210, no. 12, pp. 1574-1579.

    Article  CAS  Google Scholar 

  29. S. Wroński, K. Wierzbanowski, B. Bacroix, M. Wróbel, and M. Wroński: Mater. Sci. Forum., 2010, vol. 638-642, pp. 2811-2816.

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the use of equipment within the Monash Centre for Electron Microscopy, including SEM FEI Quanta 3D, funded through the Australian Research Council grant LE0882821. The authors also gratefully acknowledge financial support of this work by a Linkage Industrial project LP0989455 of the Australian Research Council. This work was also supported by the French State through the program “Investment in the future” operated by the National Research Agency (ANR) and referenced by ANR-11-LABX-0008-01 (LabEx DAMAS). One of the authors (P.D.H.) also acknowledges the support of the ARC Laureatte Fellowship scheme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dmitry Orlov.

Additional information

Manuscript submitted October 10, 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Orlov, D., Pougis, A., Lapovok, R. et al. Asymmetric Rolling of Interstitial-Free Steel Using Differential Roll Diameters. Part I: Mechanical Properties and Deformation Textures. Metall Mater Trans A 44, 4346–4359 (2013). https://doi.org/10.1007/s11661-013-1791-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-013-1791-y

Keywords

Navigation