Skip to main content
Log in

The Hexagonal Close-Packed (HCP) ⇆ Face-Centered Cubic (FCC) Transition in Co-Re-Based Experimental Alloys Investigated by Neutron Scattering

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Co-Re-based alloys have been developed to supplement the Ni-base superalloys used in gas turbine applications at high temperatures (1473 K [1200 °C] bare metal temperature). Unlike other commercial Co-based alloys, the Co matrix in the Co-Re alloys has a stable hexagonal close-packed (hcp) structure at room temperature. In situ neutron diffraction measurements on experimental Co-Re alloys hardened by carbide precipitates showed that the matrix undergoes an hcp ⇆ face-centered cubic (fcc) allotropic transformation after heating to high temperatures. Furthermore, it was found that this transformation has a large hysteresis (~100 K). Thermodynamic calculations were undertaken to study the high-temperature phase stability and transformations in the complex multicomponent, multiphase Co-Re-Cr-C system with or without the addition of Ta. The results show that the minor phases (Cr23C6-type carbides and the Cr2Re3-type σ phase) play an important role in the hcp ⇆ fcc hysteresis by influencing the partitioning of Cr and Re between the matrix and the other phases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. An isopleth is a phase diagram where the tie lines are not in the plane of the diagram and where at least one extensive variable, normally a composition, is fixed. The isoplethal sections are a special case of the vertical section.

References

  1. C. Montero-Ocampo, R. Juarez, and A.S. Rodriguez: Metall. Mater. Trans. A, 2002, vol. 33A, pp. 2229–35.

    Article  CAS  Google Scholar 

  2. K. Oikawa, G.-W. Qin, T. Ikeshoji, R. Kainuma, and K. Ishida: Acta Mater., 2002, vol. 50, pp. 2223–32.

    Article  CAS  Google Scholar 

  3. C. Hitzenberger and H.P. Karnthaler: Philos. Mag. A, 1991, vol. 64, pp. 151–63.

    Article  CAS  Google Scholar 

  4. S.K. Sahay and B. Goswami: Solid State Phenom., 2009, vol. 150, pp. 197–219.

    Article  CAS  Google Scholar 

  5. Y. Liu, H. Yang, G. Tan, S. Miyazaki, B. Jiang, and Y. Liu: J. Alloys Compd., 2004, vol. 368, pp.157–63.

    Article  CAS  Google Scholar 

  6. J.W. Christian: The Theory of Transformations in Metals and Alloys, Pergamon Press, Oxford, UK, 1985, p. 94.

    Google Scholar 

  7. G.B. Olsen and M. Cohen: Dislocations in Solids, F.R.N. Nabarro, ed., North-Holland, Amsterdam, the Netherlands, 1986, vol. 7, p. 295.

  8. J. Rösler, D. Mukherji, and T. Baranski: Adv. Eng. Mater., 2007, vol. 9, pp. 876–81.

    Article  Google Scholar 

  9. E.M. Sokolovskaya, M.L. Tuganbaev, G.I. Stepanova, E.F. Kazakova, and I.G. Sokolova: J. Less-Common Met., 1986, vol. 124, pp. L5–L7.

    Article  CAS  Google Scholar 

  10. M. Hofmann, R. Schneider, G.A. Seidl, J. Kornmeier, R. Wimpory, U. Garbe, and H.G. Brokmeier: Physica B, 2006, vols. 385–368, pp. 1035–37.

    Article  Google Scholar 

  11. R. Gilles, M. Hoelzel, M. Schlapp, F. Elf, B. Krimmer, H. Boysen, and H. Fuess: Z. Kristallogr. Suppl., 2006, vol. 23, pp. 183–38.

    Article  Google Scholar 

  12. Berlin Neutron Scattering Center: U.S.E. Handbook, 2000b, http://www.hmi.de/bensc/sample-env/USE20004.pdf.

  13. D. Mukherji, M. Klauke, P. Strunz, I. Zizak, G. Schumacher, A. Wiedenmann, and J. Rösler: Int. J. Mat. Res., 2010, vol. 101, pp. 340–48.

    Article  CAS  Google Scholar 

  14. D. Mukherji, P. Strunz, R. Gilles, M. Hofmann, F. Schmitz, and J. Rösler: Mater. Lett., 2010, vol. 64, pp. 2608–11.

    Article  CAS  Google Scholar 

  15. H.L. Lukas, S.G. Fries, and B. Sundman: Computational Thermodynamics, Cambridge University Press, 2007.

  16. B. Sundman, B. Jansson, and J.-O. Andersson: CALPHAD, 1985, vol. 9, pp. 153–90.

    Article  CAS  Google Scholar 

  17. A.I. Gusev, A.S. Kurlov, and V.N. Lipatnikov: J. Solid State Chem., 2007, vol. 180, pp. 3234–46.

    Article  CAS  Google Scholar 

  18. A.I. Gusev, A.A. Rempel, and A.J. Magerl: Disorder and Order in Strongly Non-Stoichiometric Compounds, Springer, Berlin, Germany, 2001, p. 455.

    Google Scholar 

  19. H. Okamoto: J. Phase Equilib., 2003, vol. 24, pp. 377–78.

    Article  CAS  Google Scholar 

  20. T.B. Massalski: Binary Alloy Phase Diagrams, ASM International, Materials Park, OH, 1986, vol. 1, p. 793.

Download references

Acknowledgments

Financial support from the Deutsche Forschungsgemeinschaft for the research project “Beyond Nickelbase Superalloys” is gratefully acknowledged. One author (P. Strunz) acknowledges support from the AV0Z10480505 project and the MPO project FR-TI1/378.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Debashis Mukherji.

Additional information

Manuscript submitted August 27, 2010.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mukherji, D., Strunz, P., Piegert, S. et al. The Hexagonal Close-Packed (HCP) ⇆ Face-Centered Cubic (FCC) Transition in Co-Re-Based Experimental Alloys Investigated by Neutron Scattering. Metall Mater Trans A 43, 1834–1844 (2012). https://doi.org/10.1007/s11661-011-1058-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-011-1058-4

Keywords

Navigation