Skip to main content
Log in

Effect of composition on the matrix transformation of the Co-Re-Cr-Ta-C alloys

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

Neutron diffraction measurement was performed in-situ at high temperatures on Co-Re-Ta-C alloys with and without Cr addition. This included alloys containing different C content with the C/Ta ratio varying between 0.5 and 1.0. The Co-Re-solid solution matrix of the experimental alloys is polymorphic (like in pure cobalt) and transformed from low temperature hexagonal ɛ phase to high temperature cubic γ phase on heating. This transformation is reversible and show hysteresis. The main alloying addition, Re, stabilizes the ɛ Co-phase and increases the transformation temperature to above 1273 K. The onset of the \(\varepsilon \rightleftharpoons \gamma\) transformation during heating and cooling was found to differ depending on the alloy composition. In alloys without Cr addition the transformation was not completed on cooling and the high temperature γ phase was partly retained at room temperature in metastable state with the amount depending on the cooling rate from high temperature. The diffraction and microstructural results showed that Cr is ɛ stabilizer (similar as Re) but the role of Ta is not clear. The C/Ta ratio has no direct effect on the matrix phase transformation. Nevertheless, it influences indirectly by determining the amount of Ta which is freely available in the matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. C. Reed, The Superalloys Fundumentals and Applications, pp. 1–31, Cambridge University Press, Cambridge (2006).

    Book  Google Scholar 

  2. J. H. Perepezko, Science 326, 1068 (2009).

    Article  Google Scholar 

  3. J. Rösler, D. Mukherji, and T. Baranski, Adv. Eng. Mater. 9, 876 (2007).

    Article  Google Scholar 

  4. D. Mukherji, J. Rösler, J. Wehrs, P. Strunz, P. Beran, R. Gilles, M. Hofmann, M. Hoelzel, H. Eckerlebe, L. Szentmiklósi, and Z. Mácsik Metall. Mater. Trans. A 44, 22 (2013).

    Article  Google Scholar 

  5. B. Gorr, V. Trindade, S. Burk, H.-J. Christ, M. Klauke, D. Mukherji, and J. Rösler, Oxid. Met. 71, 157 (2009).

    Article  Google Scholar 

  6. L. Wang, B. Gorr, H.-J. Christ, D. Mukherji, and J. Rösler, Oxid. Met. 83, 465 (2015).

    Article  Google Scholar 

  7. D. Coutsouradis, A. Davin, and M. Lamberigts, Mater. Sci. Eng. 88, 11 (1987).

    Article  Google Scholar 

  8. D. Mukherji, M. Klauke, P. Strunz, I. Zizak, G. Schumacher, A. Wiedenmann, and J. Rösler, Int. J. Mater. Res. 101, 340 (2010).

    Article  Google Scholar 

  9. D. Mukherji and J. Rösler, J. Phys. Conf. Ser. 240, 012066 (2010).

    Article  Google Scholar 

  10. D. Mukherji, R. Gilles, L. Karge, P. Strunz, P. Beran, H. Eckerlebe, A. Stark, L. Szentmiklósi, Z. Mácsik, G. Schumacher, I. Zizak, M. Hofmann, M. Hoelzel, and J. Rösler, J. Appl. Crystallogr. 47, 1417 (2014).

    Article  Google Scholar 

  11. J. W. Christian, Proc. R. Soc. A 206, 51 (1951).

    Article  Google Scholar 

  12. C. Hitzenberger, H.P. Karnthaler, and A. Korner, Phys. Status Solidi A 89, 133 (1985).

    Article  Google Scholar 

  13. X. Wu, N. Tao, Y. Hong, J. Lu, and K. Lu, Scr. Mater. 52, 547 (2005).

    Article  Google Scholar 

  14. M. Hansen and K. Anderko, Constitution of Binary Alloys, 2nd ed., p. 805, McGraw-Hill, New York (1958).

    Google Scholar 

  15. K. Shinagawa, H. Chinen, T. Omori, K. Oikawa, I. Ohnuma, K. Ishida, and R. Kainuma, Intermetallics 49, 87 (2014).

    Article  Google Scholar 

  16. D. Mukherji, P. Strunz, R. Gilles, M. Hofmann, F. Schmitz, and J. Rösler, Mater. Lett. 64, 2608 (2010).

    Article  Google Scholar 

  17. J. Singh and S. Rangahathan, Phys. Status Solidi A 73, 243 (1981).

    Article  Google Scholar 

  18. M. Hofmann, R. Schneider, G. A. Seidl, J. Rebelo-Kornmeier, R.C. Wimpory, U. Garbe, Phys. B Condens. Matter. 385-386, 1035 (2006).

    Article  Google Scholar 

  19. M. Hoelzel, A. Senyshyn, N. Juenke, H. Boysen, W. Schmahl, and H. Fuess, Nucl. Instruments Methods Phys. Res. A 667, 32 (2012).

    Article  Google Scholar 

  20. J. Rodríguez-Carvajal, Phys. B Condens. Matter. 192, 55 (1993).

    Article  Google Scholar 

  21. H. M. Rietveld, J. Appl. Crystallogr. 2, 65 (1969).

    Article  Google Scholar 

  22. A. I. Gusev, A. A. Rempel, and A. J. Magerl, Disorder and Order in Strongly Nonstoichiometric Compounds - Transition Metal Carbides, Nitrides and Oxides, p. 455, Springer Verlag, Berlin Heidelberg (2001).

    Book  Google Scholar 

  23. G. Santoro, Trans. Metall. Soc. AIME. 227, 1361 (1963).

    Google Scholar 

  24. L. V. Zueva and A. I. Gusev, Phys. Solid State. 41, 1032 (1999).

    Article  Google Scholar 

  25. N. Wanderka, private communication.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Debashis Mukherji.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beran, P., Mukherji, D., Strunz, P. et al. Effect of composition on the matrix transformation of the Co-Re-Cr-Ta-C alloys. Met. Mater. Int. 22, 562–571 (2016). https://doi.org/10.1007/s12540-016-5697-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-016-5697-2

Keywords

Navigation