Skip to main content
Log in

Mechanisms of Hf dopant incorporation during the early stage of chemical vapor deposition aluminide coating growth under continuous doping conditions

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

A laboratory-scale chemical vapor deposition (CVD) reactor was used to perform “continuous” Hf doping experiments while the surface of a single-crystal Ni alloy was being aluminized to form an aluminide (β-NiAl) coating matrix for 45 minutes at 1150 °C. The continuous doping procedure, in which HfCl4 and AlCl3 were simultaneously introduced with H2, required a high HfCl4/AlCl3 ratio (>∼0.6) to cause the precipitation of Hf-rich particles (∼0.1 µm) at grain boundaries of the coating layer, with the overall Hf concentration of ∼0.05 to 0.25 wt pct measured in the coating layer by glow-discharge mass spectroscopy (GDMS). Below this ratio, Hf did not incorporate as a dopant into the growing coating layer from the gas phase, as the coating matrix appeared to be “saturated” with other refractory elements partitioned from the alloy substrate. In comparison, the Hf concentration in the aluminide coating layer formed on pure Ni was in the range of ∼0.1 wt pct, which was close to the solubility of Hf estimated for bulk NiAl. Interestingly, the segregation of Hf and the formation of a thin γ′-Ni3Al layer (∼0.5 µm) at the coating surface were consistently observed for both the alloy and pure-Ni substrates. The formation of the thin γ′-Ni3Al layer was attributed to an increase in the elastic strain of the β-NiAl phase, associated with the segregation of Hf as well as other refractory alloying elements at the coating surface. This phenomenon also implied that the coating layer was actually growing at the interface between the γ′-Ni3Al layer and the β-NiAl coating matrix, not at the gas/coating interface, during the early stage of the coating growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G.W. Goward: Mater. Sci. Technol., 1986, vol. 2, pp. 194–200.

    CAS  Google Scholar 

  2. B. Nagaraj: U.S. Patent 5,427, 866, 1995.

  3. S.M. Meier, D.M. Nissley, K.D. Sheffler, and T.A. Cruse: Trans. ASME, 1992, vol. 114, pp. 258–63.

    CAS  Google Scholar 

  4. S.M. Meier, D.K. Gupta, and K.D. Sheffler: J. Met., 1991, Mar., pp. 50–53.

  5. A. Maricocchi, A. Bartz, and D.J. Wortman: Proc. 1995 Thermal Barrier Coating Workshop, W.J. Brindley, ed., NASA Conference Publication No. 3312, Washington, DC, 1995, p. 79.

  6. A.W. Funkenbusch, J.G. Smeggil, and N.S. Bornstein: Metall. Trans. A, 1985, vol. 16A, pp. 1164–66.

    CAS  Google Scholar 

  7. D.K. Gupta: U.S. Patent 4,933,329, 1990.

  8. B.A. Pint: Oxid. Met., 1996, vol. 45, p. 1.

    Article  CAS  Google Scholar 

  9. B.A. Pint, I.G. Wright, W.Y. Lee, Y. Zhang, K. Prüßner, and K.B. Alexander: Mater. Sci. Eng., 1998, vol. A245, pp. 201–11.

    CAS  Google Scholar 

  10. R. Bianco and R.A. Rapp: J. Electrochem. Soc., 1993, vol. 140, pp. 1181–90.

    Article  CAS  Google Scholar 

  11. R. Bianco and R.A. Rapp: J. Electrochem. Soc., 1993, vol. 140, pp. 1191–203.

    Article  CAS  Google Scholar 

  12. A. Strawbridge and P.Y. Hou: Mater. High Temp., 1994, vol. 12, pp. 177–81.

    CAS  Google Scholar 

  13. R. Prescott, D.F. Mitchell, M.J. Graham, and J. Doychak: Corr. Sci., 1995, vol. 37, pp. 1341–64.

    Article  CAS  Google Scholar 

  14. D.C. Tu, C.C. Lin, S.J. Liao, and J.C. Chou: J. Vac. Sci. Technol., 1986, vol. A4, pp. 2601–06.

    Google Scholar 

  15. K.Y. Kim, S.H. Kim, K.W. Kwon, and I.H. Kim: Oxid. Met., 1994, vol. 41, pp. 179–201.

    Article  CAS  Google Scholar 

  16. K.Y. Kim, J.H. Jun, and H.G. Jun: Oxid. Met., 1993, vol. 40, pp. 321–35.

    Article  CAS  Google Scholar 

  17. G.W. Goward: presented at the Metallic Coatings Specialty Workshop, Hoboken, NJ, Apr. 16, 1997.

  18. B.A. Pint and L.W. Hobbs: J. Electrochem. Soc., 1994, vol. 141, pp. 2443–53.

    Article  CAS  Google Scholar 

  19. J. Stringer, I.M. Allam, and D.P. Whittle: Thin Solid Films, 1977, vol. 45, pp. 377–84.

    Article  CAS  Google Scholar 

  20. Y. Zhang, W.Y. Lee, J.A. Haynes, I.G. Wright, B.A. Pint, K.M. Cooley, and P.K. Liaw: Metall. Mater. Trans. A, 1999, vol. 30A, pp. 2679–87.

    CAS  Google Scholar 

  21. W.Y. Lee, Y. Zhang, I.G. Wright, B.A. Pint, and P.K. Liaw: Metall. Trans. A, 1998, vol. 29A, pp. 833–41.

    Article  CAS  Google Scholar 

  22. W.Y. Lee and G.Y. Kim: Min. Met. Mater. Soc., 1999, pp. 149–60.

  23. G.Y. Kim, W.Y. Lee, J.A. Haynes, and T.R. Watkins: Metall. Mater. Trans. A, unpublished research, 2003.

  24. S.J. Klepeis, J.P. Benedict, and R.M. Anderson: Mater. Res. Soc. Proc., 1988, vol. 115, p. 179.

    Google Scholar 

  25. A.P. Mykytiuk, P. Semeniuk, and S. Berman: Spectrochimica Acta Rev., 1990, vol. 13, pp. 1–10.

    CAS  Google Scholar 

  26. F. Adams and A. Vertes: Fresenius J. Anal. Chem, 1990, vol. 337, p. 638.

    Article  CAS  Google Scholar 

  27. R. Pichoir: in Materials and Coatings to Resist High Temperature Corrosion, D.R. Holmes and A. Rahmel, eds., Applied Science Publishers Ltd., London, 1978, pp. 271–91.

    Google Scholar 

  28. G.Y. Kim, L.M. He, J.D. Meyer, and W.Y. Lee: Min. Met. Mater. Soc., 2000, pp. 69–78.

  29. R. Pretorius, C.C. Theron, A. Vantomme, and J.W. Mayer: Crit. Rev. Solid State Mater. Sci., 1999, vol. 24 (I), pp. 1–62.

    Article  CAS  Google Scholar 

  30. A.M. Brown and M.F. Ashby: Acta Metall., 1980, vol. 28, pp. 1085–101.

    Article  CAS  Google Scholar 

  31. E.G. Colgan: Mater. Sci. Rep., 1990, vol. 5, pp. 1–44.

    Article  CAS  Google Scholar 

  32. O. Kubaschewski and C.B. Alock: Metallurgical Thermochemistry, Pergamon Press, Oxford, UK, 1979, p. 184.

    Google Scholar 

  33. HSC Chemistry, Ver. 4.0, Outokumpu, Poli., Finland.

  34. R.D. Noebe, R.R. Bowman, and M.V. Nathal: Int. Mater. Rev., 1993, vol. 38, pp. 193–232.

    CAS  Google Scholar 

  35. S.V. Divinski, S. Frank, U. Södervall, and C. Herzig: Acta Mater., 1998, vol. 46, pp. 4369–80.

    Article  CAS  Google Scholar 

  36. A.J. Hickl and R.W. Heckel: Metal. Trans. A, 1975, vol. 6, pp. 431–40.

    Google Scholar 

  37. G. Ottaviani: Thin Solid Films, 1982, vol. 93, p. 127.

    Article  Google Scholar 

  38. C.C. Jia, K. Ishida, and T. Nishizawa: Metall. Mater. Trans. A, 1994, vol. 25A, pp. 473–85.

    CAS  Google Scholar 

  39. G. Bozzolo, R.D. Noebe, and F. Honecy: Min. Met. Mater. Soc., 1998, pp. 341–68.

  40. W. Blum and D. Hess: Solid State Ionics, 1997, vol. 95, p. 41.

    Article  CAS  Google Scholar 

  41. T. Ikeda, A. Almazouzi, H. Numakura, M. Koiwa, W. Sprengel, and H. Nakajima: Acta Mater., 1998, vol. 46, pp. 5369–76.

    Article  CAS  Google Scholar 

  42. S. Shankar and L.L. Seigle: Metall. Trans. A, 1978, vol. 9A, pp. 1467–76.

    CAS  Google Scholar 

  43. R. Sivakumar and L.L. Seigle: Metall. Trans. A, 1976, vol. 7A, pp. 1073–79.

    CAS  Google Scholar 

  44. L. Singheiser and G. Wahl: Thin Solid Films, 1983, vol. 107, pp. 443–54.

    Article  CAS  Google Scholar 

  45. I.E. Locci, R.M. Dickerson, A. Garg, R.D. Noebe, J.D. Whittenberger, M.V. Nathal, and R. Darolia: J. Mater. Res., 1996, vol. 11, pp. 3024–38.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, G.Y., He, L.M., Meyer, J.D. et al. Mechanisms of Hf dopant incorporation during the early stage of chemical vapor deposition aluminide coating growth under continuous doping conditions. Metall Mater Trans A 35, 3581–3593 (2004). https://doi.org/10.1007/s11661-004-0194-5

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-004-0194-5

Keywords

Navigation