Skip to main content
Log in

Oxidative stress in streptozocin-diabetic rats: Amelioration by mulberry (Morus Indica L.) leaves

  • Original Article
  • Published:
Chinese Journal of Integrative Medicine Aims and scope Submit manuscript

Abstract

Objective

To investigate amelioration of oxidative stress by mulberry (Morus indica L.) leaves in streptozocin (STZ)-diabetic rats, as the leaves of mulberry (Morus indica L.) of Moraceae, are reported to be rich in a number of bioactive principles, i.e. antioxidant vitamins, flavonoids and moracins that can fight against oxidative stress in diabetes.

Method

Normal wistar albino rats and STZ-diabetic rats were treated with dried mulberry leaf powder at 25% in the diet for a period of 8 weeks. The antioxidant role of mulberry was assessed by determining the effect of the leaves on hepatic lipid peroxidation, a marker of oxidative stress and the activity of hepatic antioxidant enzymes and serum antioxidant vitamins in comparison with untreated normal and diabetic rats.

Results

Increased oxidative stress as shown by increased lipid peroxidation and increased activity of catalase (CAT) in hepatic tissue, decreased serum ascorbic acid (vitamin C) and tocopherol (vitamin E) in diabetic rats were countered by mulberry leaves. In addition, decreased activities of hepatic antioxidant enzymes, i.e. glucose-6-phosphate dehydrogenase (G6PDH), glutathione peroxidase (GPx), glutathinone-S-tranferase (GST) and superoxide dismutase (SOD) were significantly increased by 34%, 61%, 19% and 53% respectively in mulberry leaves-treated diabetic rats as compared with diabetic control rats.

Conclusion

Treatment with mulberry leaves protected STZ-diabetic rats from lipid peroxidation and elevated the activities of defense enzymes. This study reveals ameliorating effect of mulberry leaves on oxidative stress in diabetic rats by the synergistic action of a number of bioactive compounds present in mulberry leaves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Laloraya M, Kumar P, Laloraya MM. A possible role of superoxide anion radical in the process of blastocyst implantation in mice. Biochem Biophys Res Comm 1989;161:762–770.

    Article  PubMed  CAS  Google Scholar 

  2. Halliwell B. Free radicals and antioxidants: a personal view. Nutr Rev 1994;52:253–265.

    Article  PubMed  CAS  Google Scholar 

  3. Baynes JW. Role of oxidative stress in the development of complications in diabetes. Diabetes 1991;40:405–412.

    Article  PubMed  CAS  Google Scholar 

  4. Jacob RA. The integrated antioxidant system. Nutr Res 1995;15:755–766.

    Article  CAS  Google Scholar 

  5. Halliwell B, Guttridge JMC. Free radicals in biology and medicine. 3rd ed. Oxford: Oxford University Press; 1999:237–248.

    Google Scholar 

  6. Ashour M, Salem S, Hassaneen H, EL-Gadban H, Elwan N, Awad A, et al. Antioxidant status in insulin dependent diabetes mellitus (IDDM). J Clin Biochem Nutr 1999;26:99–107.

    Article  CAS  Google Scholar 

  7. Garg MC, Bansal DD. Protective antioxidant effect of vitamin C and E in streptozotocin induced diabetic rats. Indian J Exp Biol 2000;38:101–104.

    PubMed  CAS  Google Scholar 

  8. Hagura R. Diabetes mellitus and life-style for the primary prevention of diabetes mellitus: the role of diet. British J Nutr 2000;84(suppl 2):S191–S194.

    Article  CAS  Google Scholar 

  9. Li SZ. Compendium of Materia Medica. Beijing: People’s Medical Publishing House; 1978:20–27.

    Google Scholar 

  10. Chen F, Nakashima N, Kimura I, Kimura M. Hypoglycemic activity and mechanism of extracts from mulberry leaves (Folium Mori) and cortex mori radicis in streptozotocin-induced diabetic mice. Yakugaku Zasshi 1995;115:476–482.

    PubMed  CAS  Google Scholar 

  11. Kim SY, Gao JJ, Lee WC, Ryu KS, Lee KR, Kim YC. Antioxidative flavonoids from the leaves of Morus alba. Arch Pharm Res 1999;22:81–85.

    Article  PubMed  CAS  Google Scholar 

  12. Sharma R, Sharma A, Shono T, Takasugi M, Shirata A, Fujimuras T, et al. Mulberry moracins: scavengers of UV stress-generated free radicals. Biosci Biotechnol Biochem 2001;65:1402–1405.

    Article  PubMed  CAS  Google Scholar 

  13. Rakieten N, Rakieten ML, Nadkarni V. Studies on the diabetic action of streptozotocin. Cancer Chemother Rep 1963;29:91–98.

    Google Scholar 

  14. Trinder P. Determination of glucose by glucose oxidase method. Ann Clin Biochem 1969;6:24–26.

    CAS  Google Scholar 

  15. Andallu B, Varadacharyulu NCh. Gluconeogenic substrates and hepatic gluconeogenic enzymes in STZ-diabetic rats: effect of mulberry (Morus Indica L.) leaves. J Med Food 2007;10:41–48.

    Article  PubMed  CAS  Google Scholar 

  16. Roe JH. In: Seligson D, ed. Standard methods in clinical chemistry. Vol III. New York: Academic Press. 1961:35–37.

    Google Scholar 

  17. Desai ID. Vitamin E analysis method for animal tissue. In: Packer L, ed. Methods in enzymology. Vol 105. New York: Academic Press; 1984:142–143.

    Google Scholar 

  18. Buege JA, Aust SD. Microsomal lipid peroxidation. In: Fleischer S, Packer Z. eds. Methods in enzymology. Vol 52. New York: Academic Press; 1978:302–305.

    Google Scholar 

  19. Glock GE, Mclean P. Further studies on the properties and assay of glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase of rat liver. Biochem J 1953;55:400–408.

    PubMed  CAS  Google Scholar 

  20. Paglia DE, Valentine WN. Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. J Lab Clin Med 1967;70:158–169.

    PubMed  CAS  Google Scholar 

  21. Habig V, Pobst MJ, Jakob WB. Glutathione-S-transferases. J Biol Chem 1974;249:7130–7139.

    PubMed  CAS  Google Scholar 

  22. Mishra PH, Fridovich I. The role of superoxide anion in the autoxidation of epinephrine and a simple assay for SOD. J Biol Chem 1972;247:3170–3175.

    Google Scholar 

  23. Beers PF, Sizer JW. A spectrophotometric method for measuring the break down of hydrogen peroxide by catalase. J Biol Chem 1952;195:133–140.

    PubMed  CAS  Google Scholar 

  24. Gornall AG, Bardawill CS, David MM. Determination of serum proteins by means of the Biuret reaction. J Biol Chem 1949;177:751–766.

    PubMed  CAS  Google Scholar 

  25. Duncan DB. Multiple range and multiple F tests. Biometrics 1955;11:1–42.

    Article  Google Scholar 

  26. Sener G, Sacan O, Yanardag R, Dulger GA. Effect of Chard (Betavulgaris L. Var. cicla) extract on oxidative injury in the aorta and heart of streptozotocin-diabetic rats. J Med Food 2002;5(1):37–42.

    Article  PubMed  CAS  Google Scholar 

  27. Chitra V, Leelamma S. Coriandrum sativam changes the levels of lipid peroxides and activity of antioxidant enzymes in experimental animals. Indian J Exp Biol 1999;36:59–61.

    Google Scholar 

  28. Hunt JV, Dean RT, Wolff SP. Hydroxyl radical production and autoxidative glycosylation. Glucose autoxidation as the cause of protein damage in the experimental glycation model of diabetes mellitus and aging. Biochem J 1988;256:205–212.

    PubMed  CAS  Google Scholar 

  29. Nishikawa T, Edelsterin D, Du XL, Yamagishi SI, Matsumura T, Kaneda Y, et al. Normalizing mitochondrial superoxide production blocks three pathways of hyperglycemic damage. Nature 2000;404:787–790.

    Article  PubMed  CAS  Google Scholar 

  30. Bose PC, ed: Genetic resources of mulberry and utilization. CSRTI Mysore, India: CSR&TI Mysore; 1989:183–190.

    Google Scholar 

  31. Doi K, Kojima T, Fujimoto Y. Mulberry leaf extract inhibits oxidative modification of rabbit and human low density lipoprotein. Biol Pharm Bull 2000;23:1066–1071.

    Article  PubMed  CAS  Google Scholar 

  32. Ng TB, Liu F, Wang ZT. Antioxidant activity of natural products from plants. Life Sci 2000;66:709–723.

    Article  PubMed  CAS  Google Scholar 

  33. Garg MC, Singh KP, Bansal DD. Effect of vitamin C supplementation on oxidative stress in experimental diabetes. Indian J Exp Biol 1997;35:264–266.

    PubMed  CAS  Google Scholar 

  34. Dincer Y, Alademir Z, Iikova H, Akcay T. Susceptibility of glutathione and glutathione related antioxidant activity to hydrogen peroxide in patients with type 2 diabetes: effect of glycemic control. Clin Biochem 2002;35:297–301.

    Article  PubMed  CAS  Google Scholar 

  35. Hussain HEMA. Hypoglycemic, hypolipidemic and antioxidant properties of combination of curmin from Curcuma longa, Linn. and partially purified product from Abroma augusta Linn. in streptozotocin induced diabetes. Indian J Clin Biochem 2002;17(2):33–43.

    Article  Google Scholar 

  36. Condell RA, Tapell AL. Evidence for suitability of glutathione peroxidase as a protective enzyme: studies of oxidative damage, restoration and proteolysis. Arch Biochem Biophys 1983;223:407–416.

    Article  PubMed  CAS  Google Scholar 

  37. Towill LE, Drury JS, Hammons AS, Holleman JW. Review of the environmental effects of pollutants III chromium EPA/600/1-778/23. Washington: Environmental Protection Agency; 1978.

    Google Scholar 

  38. Gupta BL, Ansari A, Singh JN, Backer NZ. Effect of insulin and thyroxine on catalase, glutathione-S-transferase, GSH and GSSG in alloxan diabetic rat cells. Biochem Intern 1989;27:793–812.

    Google Scholar 

  39. Mukherjee B, Mukherjee, JH, Chatterjee M. Lipid peroxidation, glutathione levels and change in glutathione related enzyme activities in streptozotocin-induced diabetic rats. Immunol Cell Biol 1994;72:109–114.

    Article  PubMed  CAS  Google Scholar 

  40. Jain SK. Glutathione and glucose-6-phosphate dehydrogenase deficiency can increase protein glycation. Free Rad Biol Med 1998;24:97–101.

    Google Scholar 

  41. Bhattacharya SK, Satyam KS, Chakrabarthi A. Effect of “Trasina” an ayurvedic herbal formulation on pancreatic islet superoxide dismutase activity in hyperglycemic rats. Indian J Exp Biol 1997;35:297–299.

    PubMed  CAS  Google Scholar 

  42. Arai K, Lizuka S, Tada Y, Ockawa K, Taniguchi NC. Increased glycosylated form of erythrocytes Cu-Zn superoxide dismutase in diabetes and close association of the non enzymatic glycosylation with the enzyme activity. Biochem Biophys Acta 1989;924:292–296.

    Google Scholar 

  43. Oberley LW. Free radicals and diabetes. Free Rad Biol Med 1988;5:113–124.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bondada Andallu.

Additional information

Supported by the University Grants Commission, India

Rights and permissions

Reprints and permissions

About this article

Cite this article

Andallu, B., Kumar, A.V. & Varadacharyulu, N.C. Oxidative stress in streptozocin-diabetic rats: Amelioration by mulberry (Morus Indica L.) leaves. Chin. J. Integr. Med. (2012). https://doi.org/10.1007/s11655-012-1234-4

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1007/s11655-012-1234-4

Keywords

Navigation