Skip to main content
Log in

Pinning control and controllability of complex dynamical networks

  • Review
  • Published:
International Journal of Automation and Computing Aims and scope Submit manuscript

Abstract

In this article, the notion of pinning control for directed networks of dynamical systems is introduced, where the nodes could be either single-input single-output (SISO) or multi-input multi-output (MIMO) dynamical systems, and could be non-identical and nonlinear in general but will be specified to be identical linear time-invariant (LTI) systems here in the study of network controllability. Both state and structural controllability problems will be discussed, illustrating how the network topology, node-system dynamics, external control inputs and inner dynamical interactions altogether affect the controllability of a general complex network of LTI systems, with necessary and sufficient conditions presented for both SISO and MIMO settings. To that end, the controllability of a special temporally switching directed network of linear time-varying (LTV) node systems will be addressed, leaving some more general networks and challenging issues to the end for research outlook.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. J. Watts, S. H. Strogatz. Collective dynamics of ‘smallworld’ networks. Nature, vol. 393, no. 6684, pp. 440–442, 1998.

    Article  Google Scholar 

  2. A. L. Barabási, R. Albert. Emergence of scaling in random networks. Science, vol. 286, no. 5439, pp. 509–512, 1999.

    Article  MathSciNet  MATH  Google Scholar 

  3. P. Erdos, A. Rényi. On the evolution of random graphs. Publication of the Mathematical Institute of the Hungarian Academy Sciences, vol. 5, pp. 17–60, 1960.

    MathSciNet  MATH  Google Scholar 

  4. C. K. Chui, G. R. Chen. Linear Systems and Optimal Control, New York, USA: Springer-Verlag, 1989.

    Book  MATH  Google Scholar 

  5. G. R. Chen, Z. S. Duan. Network synchronizability analysis: A graph-theoretic approach. Chaos, vol. 18, Article number 037102, 2008.

    MATH  Google Scholar 

  6. X. F. Wang, G. R. Chen. Pinning control of scale-free dynamical networks. Physica A: Statistical Mechanics and its Applications, vol. 310, no. 3–4, pp. 521–531, 2002.

    Article  MathSciNet  MATH  Google Scholar 

  7. X. Li, X. F. Wang, G. R. Chen. Pinning a complex dynamical network to its equilibrium. IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 51, no. 10, pp. 2074–2087, 2004.

    Article  MathSciNet  Google Scholar 

  8. G. R. Chen, X. F. Wang, X. Li. Introduction to Complex Networks: Models, Structures and Dynamics, 2nd ed., Beijing, China: Higher Education Press.

  9. A. Cho. Scientific link-up yields ‘control panel’ for networks. Science, vol. 332, no. 6031, pp. 777, 2011.

    Article  Google Scholar 

  10. I. D. Couzin, J. Krause, N. R. Franks, S. A. Levin. Effective leadership and decision-making in animal groups on the move. Nature, vol. 433, no. 7025, pp. 513–516, 2005.

    Article  Google Scholar 

  11. G. R. Chen. Pinning control and synchronization on complex dynamical networks. International Journal of Control, Automation and Systems, vol. 12, no. 2, pp. 221–230, 2014.

    Article  Google Scholar 

  12. X. F.Wang, H. S. Su. Pinning control of complex networked systems: A decade after and beyond. Annual Reviews in Control, vol. 38, no. 1, pp. 103–111, 2014.

    Article  Google Scholar 

  13. F. F. Li. Pinning control design for the stabilization of Boolean networks. IEEE Transactions on Neural Networks and Learning Systems, vol. 27, no. 7, pp. 1585–1590, 2016.

    Article  MathSciNet  Google Scholar 

  14. Y. Tang, H. J. Gao, J. Kurths, J. A. Fang. Evolutionary pinning control and its application in UAV coordination. IEEE Transactions on Industrial Informatics, vol. 8, no. 4, pp. 828–838, 2012.

    Article  Google Scholar 

  15. C. T. Lin. Structural controllability. IEEE Transactions on Automatic Control, vol. 19, no. 3, pp. 201–208, 1974.

    Article  MathSciNet  MATH  Google Scholar 

  16. J. L. Willems. Structural controllability and observability. Systems & Control Letters, vol. 8, no. 1, pp. 5–12, 1986.

    Article  MathSciNet  MATH  Google Scholar 

  17. H. Mayeda, T. Yamada. Strong structural controllability. SIAM Journal on Control and Optimization, vol. 17, no. 1, pp. 123–138, 1979.

    Article  MathSciNet  MATH  Google Scholar 

  18. Y. Y. Liu, A. L. Barabási. Control principles of complex networks, [Online], Available: https://arxiv.org/abs/1508.05384, 2015.

    Google Scholar 

  19. G. Yan, J. Ren, Y. C. Lai, C. H. Lai, B. W. Li. Controlling complex networks: How much energy is needed?. Physical Review Letters, vol. 108, no. 21, Article number 218703, 2012.

    Article  Google Scholar 

  20. W. X. Wang, X. Ni, Y. C. Lai, C. Grebogi. Optimizing controllability of complex networks by minimum structural perturbations. Physical Review E, vol. 85, no. 2, Article number 026115, 2012.

    Article  Google Scholar 

  21. T. Nepusz, T. Vicsek. Controlling edge dynamics in complex networks. Nature Physics, vol. 8, no. 7, pp. 568–573, 2012.

    Article  Google Scholar 

  22. T. Jia, Y. Y. Liu, E. Csóka, M. Pósfai, J. J. Slotine, A. L. Barabási. Emergence of bimodality in controlling complex networks. Nature Communications, vol. 4, Article number 2002, 2013.

    Article  Google Scholar 

  23. T. Jia, A. L. Barabási. Control capacity and a random sampling method in exploring controllability of complex networks. Scientific Reports, vol. 3, Article number 2354, 2013.

    Google Scholar 

  24. Z. Z. Yuan, C. Zhao, Z. R. Di, W. X. Wang, Y. C. Lai. Exact controllability of complex networks. Nature Communications, vol. 4, Article number 2447, 2013.

  25. G. Menichetti, L. Dall’Asta, G. Bianconi. Network controllability is determined by the density of low in-degree and out-degree nodes. Physical Review Letters, vol. 113, no. 7, Article number 078701, 2014.

    Article  Google Scholar 

  26. J. X. Gao, Y. Y. Liu, R. M. D’Souza, A. L. Barabási. Target control of complex networks. Nature Communications, vol. 5, Article number 5415, 2014.

    Article  Google Scholar 

  27. A. E. Motter. Networkcontrology. Chaos, vol. 25, no. 9, Article number 097621, 2015.

    Article  MathSciNet  Google Scholar 

  28. G. Yan, G. Tsekenis, B. Barzel, J. J. Slotine, Y. Y. Liu, A. L. Barabási. Spectrum of controlling and observing complex networks. Nature Physics, vol. 11, no. 9, pp. 779–786, 2015.

    Article  Google Scholar 

  29. A. J. Gates, L. M. Rocha. Control of complex networks requires both structure and dynamics. Scientific Reports, vol. 6, Article number 24456, 2016.

    Article  Google Scholar 

  30. T. H. Summers, F. L. Cortesi and J. Lygeros. On submodularity and controllability in complex dynamical networks. IEEE Transactions on Control of Network Systems, vol. 3, no. 1, pp. 91–101, 2016.

    Article  MathSciNet  Google Scholar 

  31. B. Das, B. Subudhi, B. B. Pati. Cooperative formation control of autonomous underwater vehicles: An overview. International Journal of Automation and Computing, vol. 13, no. 3, pp. 199–225, 2016.

    Article  Google Scholar 

  32. F. Sorrentino, M. di Bernardo, F. Garofalo, G. R. Chen. Controllability of complex networks via pinning. Physical Review E, vol. 75, no. 4, Article number 046103, 2007.

    Article  Google Scholar 

  33. L. M. Pecora, T. L. Carroll. Master stability functions for synchronized coupled systems. Physical Review Letters, vol. 80, no. 10, pp. 2109–2112, 1998.

    Article  Google Scholar 

  34. M. Porfiri, M. di Bernardo. Criteria for global pinningcontrollability of complex networks. Automatica, vol. 44, no. 12, pp. 3100–3106, 2008.

    Article  MathSciNet  MATH  Google Scholar 

  35. Y. L. Zou, G. R. Chen. Pinning controllability of asymmetrical weighted scale-free networks. Europhysics Letters, vol. 84, no. 5, Article number 58005, 2008.

    Article  Google Scholar 

  36. L. Y. Xiang, F. Chen, G. R. Chen. Pinning synchronization of networked multi-agent systems: Spectral analysis. Control Theory and Technology, vol. 13, no. 1, pp. 45–54, 2015.

    Article  MathSciNet  MATH  Google Scholar 

  37. L. Lováz, M. D. Plummer. Matching Theory, New York: Elsevier, 1986.

    Google Scholar 

  38. Y. Y. Liu, J. J. Slotine, A. L. Barabási. Controllability of complex networks. Nature, vol. 473, no. 7346, pp. 167–173, 2011.

    Article  Google Scholar 

  39. L. Wang, X. F. Wang, G. Chen. Controllability of networked higher-dimensional systems with one-dimensional communication channels. Philosophical Transactions of the Royal Society A, to be published.

  40. R. Shields, J. Pearson. Structural controllability of multiinput linear systems. IEEE Transactions on Automatic Control, vol. 21, no. 2, pp. 203–212, 1976.

    Article  MathSciNet  MATH  Google Scholar 

  41. J. M. Dion, C. Commaulta, J. van der Woude. Generic properties and control of linear structured systems: A survey. Automatica, vol. 39, no. 7, pp. 1125–1144, 2003.

    Article  MathSciNet  MATH  Google Scholar 

  42. A. Lombardi, M. Hornquist. Controllability analysis of networks. Physical Review E, vol. 75, no. 5, Article number 056110, 2007.

    Article  Google Scholar 

  43. C. T. Lin. System structure and minimal structure controllability. IEEE Transactions on Automatic Control, vol. 22, no. 5, pp. 855–862, 1977.

    Article  MathSciNet  MATH  Google Scholar 

  44. J. C. Jarczyk, F. Svaricek, B. Alt. Strong structural controllability of linear systems revisited. In Proceedings of the 50th IEEE Conference on Decision and Control and European Control Conference, IEEE, Orlando, USA, pp. 1213–1218, 2011.

    Chapter  Google Scholar 

  45. A. Chapman. Strong structural controllability of networked dynamics. Semi-Autonomous Networks, A. Chapman, Ed., New York: Springer, pp. 135–150, 2015.

  46. H. G. Tanner. On the controllability of nearest neighbor interconnections. In Proceedings of the 43rd IEEE Conference on Decision and Control, IEEE, Nassau, Bahamas, 2004, vol. 3, pp. 2467–2472.

    Google Scholar 

  47. L. Y. Xiang, J. J. H. Zhu, F. Chen, G. R. Chen. Controllability of weighted and directed networks with nonidentical node dynamics. Mathematical Problems in Engineering, vol. 2013, Article number 405034, 2013.

    Article  MathSciNet  MATH  Google Scholar 

  48. T. Zhou. On the controllability and observability of networked dynamic systems. Automatica, vol. 52, pp. 63–75, 2015.

    Article  MathSciNet  MATH  Google Scholar 

  49. L. Wang, G. R. Chen, X. F. Wang, W. K. S. Tang. Controllability of networked MIMO systems. Automatica, vol. 69, pp. 405–409, 2016.

    Article  MathSciNet  MATH  Google Scholar 

  50. L. Wang, G. R. Chen, X. F. Wang, W. K. S. Tang. Controllability of networked MIMO systems, [Online], Available: https://arxiv.org/abs/1505.01255v3, 2015.

    MATH  Google Scholar 

  51. B. Liu, T. G. Chu, L. Wang, G. M. Xie. Controllability of a leader-follower dynamic network with switching topology. IEEE Transactions on Automatic Control, vol. 53, no. 4, pp. 1009–1013, 2008.

    Article  MathSciNet  Google Scholar 

  52. X. M. Liu, H. Lin, B. M. Chen. Graph-theoretic characterisations of structural controllability for multi-agent system with switching topology. International Journal of Control, vol. 86, no. 2, pp. 222–231, 2013.

    Article  MathSciNet  MATH  Google Scholar 

  53. X. M. Liu, H. Lin, B. M. Chen. Structural controllability of switched linear systems. Automatica, vol. 49, no. 12, pp. 3531–3537, 2013.

    Article  MathSciNet  MATH  Google Scholar 

  54. P. Holme, J. Saramäki. Temporal networks. Physics Reports, vol. 519, no. 3, pp. 97–125, 2012.

    Article  Google Scholar 

  55. X. Li, P. Yao, Y. J. Pan. Towards structural controllability of temporal complex networks. In Complex Systems and Networks: Dynamics, Controls and Applications, J. H. Lü, X. H. Yu, G. R. Chen, W. W. Yu, Eds., Berlin Heidelberg: Springer, pp. 341–371, 2015.

    Google Scholar 

  56. M. Pósfai, P. Hövel. Structural controllability of temporal networks. New Journal of Physics, vol. 16, no. 12, Article number 123055, 2014.

    Article  MathSciNet  Google Scholar 

  57. G. Reissig, C. Hartung, F. Svaricek. Strong structural controllability and observability of linear time-varying systems. IEEE Transactions on Automatic Control, vol. 59, no. 11, pp. 3087–3092, 2014.

    Article  MathSciNet  Google Scholar 

  58. Y. J. Pan, X. Li. Structural controllability and controlling centrality of temporal networks. PLoS One, vol. 9, no. 4, Article number 0094998, 2014.

    Article  Google Scholar 

  59. L. M. Silverman, H. E. Meadows. Controllability and observability in time-variable linear systems. SIAM Journal on Control, vol. 5, no. 1, pp. 64–73, 1967.

    Article  MathSciNet  MATH  Google Scholar 

  60. B. Y. Hou, X. Li, G. R. Chen. Structural controllability of temporally switching networks. IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 63, no. 10, pp. 1771–1781, 2016.

    Article  MathSciNet  Google Scholar 

  61. Y. Y. Liu, J. J. Slotine, A. L. Barabási. Observability of complex systems. Proceedings of the National Academy of Sciences of the United States of America, vol. 110, no. 7, pp. 2460–2465, 2013.

    Article  MathSciNet  MATH  Google Scholar 

  62. B. B. Wang, L. Gao, Y. Gao, Y. Deng, Y. Wang. Controllability and observability analysis for vertex domination centrality in directed networks. Scientific Reports, vol. 4, Article number 5399, 2014.

    Google Scholar 

  63. A. M. Li, S. P. Cornelius, Y. Y. Liu, L. Wang, A. L. Barabási. The fundamental advantages of temporal networks, [Online], Available: https://arxiv.org/abs/1607.06168, 2016.

    Google Scholar 

  64. S. Ghosh, J. Ruths. Structural control of single-input rank one bilinear systems. Automatica, vol. 64, pp. 8–17, 2016.

    Article  MathSciNet  MATH  Google Scholar 

  65. A. J. Gates, L. M. Rocha. Control of complex networks requires both structure and dynamics. Scientific Reports, vol. 6, Article number 24456, 2016.

    Article  Google Scholar 

Download references

Acknowledgment

The author thanks Mario di Bernardo, Jian-Xi Gao, Bao- Yu Hou, Xiang Li, Yang-Yu Liu, LinWang, Xiao-FanWang, Lin-Ying Xiang and Gang Yan for their valuable comments and discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guanrong Chen.

Additional information

Recommended by Associate Editor Guo-Ping Liu

Guanrong Chen is a chair professor and the director of the Centre for Chaos and Complex Networks at the City University of Hong Kong, China. He was elected a Fellow of the IEEE in 1997, awarded the 2011 Euler Gold Medal from Russia, and conferred Honorary Doctor Degrees by the Saint Petersburg State University, Russia in 2011 and by the University of Normandy, France in 2014. He is a Highly Cited Researcher in Engineering (since 2009), in Physics (2014) and also in Mathematics (2015) according to Thomson Reuters. He is a member of the Academy of Europe (2014) and a Fellow of TheWorld Academy of Sciences (2015).

His research interests include complex systems and networks with regard to their modeling, dynamics and control.

ORCID iD: 0000-0003-1381-7418

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, G. Pinning control and controllability of complex dynamical networks. Int. J. Autom. Comput. 14, 1–9 (2017). https://doi.org/10.1007/s11633-016-1052-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11633-016-1052-9

Keywords

Navigation