Skip to main content
Log in

Cooperative formation control of autonomous underwater vehicles: An overview

  • Review
  • Published:
International Journal of Automation and Computing Aims and scope Submit manuscript

Abstract

Formation control is a cooperative control concept in which multiple autonomous underwater mobile robots are deployed for a group motion and/or control mission. This paper presents a brief review on various cooperative search and formation control strategies for multiple autonomous underwater vehicles (AUV) based on literature reported till date. Various cooperative and formation control schemes for collecting huge amount of data based on formation regulation control and formation tracking control are discussed. To address the challenge of detecting AUV failure in the fleet, communication issues, collision and obstacle avoidance are also taken into attention. Stability analysis of the feasible formation is also presented. This paper may be intended to serve as a convenient reference for the further research on formation control of multiple underwater mobile robots.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. I. Fossen. Guidance and Control of Ocean Vehicles, New York, USA: Wiley, 1994.

    Google Scholar 

  2. J. Yuh. Design and control of autonomous underwater robots: A survey. Autonomous Robots, vol. 8, no. 1, pp. 7–24, 2000.

    Article  Google Scholar 

  3. H. Kondo, K. Nakane, E. Shimizu, J. K. Choi, K. Nagahashi, M. Matsushima, Y. Nishida, T. Arimoto, Y. Miyamoto, K. Amakasu, M. Endo, R. Matsui. Design and concept of a biointeractive autonomous underwater vehicle “BA-1”. In Proceedings of IEEE OCEANS, IEEE, Sydney, Australia, pp. 24–27, 2011.

    Google Scholar 

  4. G. N. Roberts, R. Sutton. Advances in Unmanned Marine Vehicles, London, UK: The Institution of Engineering and Technology, 2006.

    Book  Google Scholar 

  5. D. Horner, O. Yakimenko. Recent Developments for an Obstacle Avoidance System for a Small AUV, Monterey, USA: Naval Postgraduate School, 2007.

    Google Scholar 

  6. J. W. Nicholson, A. J. Healey. The present state of autonomous underwater vehicle (AUV) applications and technologies. Marine Technology Society Journal, vol. 42, no. 1 pp. 44–51, 2008.

    Article  Google Scholar 

  7. D. J. Stilwell, B. E. Bishop. Platoons of underwater vehicles. IEEE Control Systems Magazine, vol. 20, no. 6, pp. 45–52, 2000.

    Article  Google Scholar 

  8. Y. T. Wang, W. S. Yan. Path parameters consensus based formation control of multiple Autonomous Underwater Vehicles in the presence of ocean currents. In Proceedings of the 17th International Conference on Methods and Models in Automation and Robotics, IEEE, Miedzyzdrojie, Poland, pp. 427–432, 2012.

    Google Scholar 

  9. Z. H. Peng, D. Wang, Z. Y Chen, X. J. Hu, W. Y. Lan. Adaptive dynamic surface control for formations of autonomous surface vehicles with uncertain dynamics. IEEE Transactions on Control Systems Technology, vol. 21, no. 2, pp. 513–520, 2013.

    Article  Google Scholar 

  10. H. B. Duan, Q. N. Luo, Y. H. Shi, G. J. Ma. Hybrid particle swarm optimization and genetic algorithm for multi-UAV formation reconfiguration. IEEE Computational Intelligence Magazine, vol. 8, no. 3, pp. 16–27, 2013.

    Article  Google Scholar 

  11. X. H. Wang, V. Yadav, S. N. Balakrishnan. Cooperative UAV formation flying with obstacle/collision avoidance. IEEE Transactions on Control System Technology, vol. 15, no. 4, pp. 672–679, 2007.

    Article  Google Scholar 

  12. J. M. Soares, A. P. Aguiar, A. M. Pascoal, A. Martinoli. Joint ASV/AUV range-based formation control: Theory and experimental results. In Proceedings of IEEE International Conference on Robotics and Automation, IEEE, Karlsruhe, Germany, pp. 5579–5585, 2013.

    Google Scholar 

  13. B. K. Sahu, B. Subudhi. Adaptive tracking control of an autonomous underwater vehicle. International Journal of Automation and Computing, vol. 11, no. 3, pp. 299–307, 2014.

    Article  Google Scholar 

  14. Y. Q. Chen, Z. M. Wang. Formation control: A review and a new consideration. In Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, IEEE, Edmonton, Canada, pp. 3181–3186, 2005.

    Google Scholar 

  15. L. Paull, S. Saeedi, M. Seto, H. Li. AUV navigation and localization: A review. IEEE Journal of Oceanic Engineering, vol. 39, no. 1, pp. 131–149, 2014.

    Article  Google Scholar 

  16. C. J. Cannell, D. J. Stilwell. A comparison of two approaches for adaptive sampling of environmental processes using autonomous underwater vehicles. In Proceedings of IEEE OCEANS, IEEE, Washington, USA, vol. 2, pp. 1514–1521, 2005.

    Google Scholar 

  17. J. Almeida, C. Silvestre, A. M. Pascoal. Cooperative control of multiple surface vessels with discrete-time periodic communications. International Journal of Robust and Nonlinear Control, vol. 22, no. 4, pp. 398–419, 2012.

    Article  MathSciNet  MATH  Google Scholar 

  18. W. Ren. Consensus strategies for cooperative control of vehicle formations. IET Control Theory & Applications, vol. 1, no. 2, pp. 505–512, 2007.

    Article  Google Scholar 

  19. H. Z. Yang, F. M. Zhang. Robust control of formation dynamics for autonomous underwater vehicles in horizontal plane. Journal of Dynamic Systems, Measurement, and Control, vol. 134, no. 3, Article number 031009, 2012.

    Google Scholar 

  20. B. D. O. Anderson, C. B. Yu, S. Dasgupta, A. S. Morse. Control of a three-coleader formation in the plane. Systems and Control Letters, vol. 56, no. 9–10, pp. 573–578, 2007.

    Article  MathSciNet  MATH  Google Scholar 

  21. C. J. F. Silvestre. Multi-Objective Optimization Theory with Applications to the Integrated Design of Controllers/Plants for Autonomous Vehicles, Ph. D. dissertation, Technical Institute of Lisbon, Portugal, 2000.

    Google Scholar 

  22. D. Kruger, R. Stolkin, A. Blum, J. Briganti. Optimal AUV path planning for extended missions in complex, fastflowing estuarine environments. In Proceedings of IEEE International Conference on Robotics and Automation, IEEE, Roma, Italy, pp. 4265–4270, 2007.

    Google Scholar 

  23. R. Kumar, J. A. Stover. A behaviour-based intelligent control architecture with application to coordination of multiple underwater vehicles. IEEE Transactions on Systems, Man, and Cybernetics, vol. 30, no. 6, pp. 767–784, 2000.

    Article  Google Scholar 

  24. J. R. T. Lawton, R. W. Beard, B. J. Young. A decentralized approach to formation maneuvers. IEEE Transactions on Robotics and Automation, vol. 19, no. 6, pp. 933–941, 2003.

    Article  Google Scholar 

  25. M. J. Mataric. Behaviour-based control: Examples from navigation, learning, and group behaviour. Journal of Experimental and Theoretical Artificial Intelligence, vol. 9, no. 2–3, pp. 323–336, 1997.

    Article  Google Scholar 

  26. W. L. Huang, H. J. Fang, L. Liu. Obstacle avoiding policy of multi-AUV formation based on virtual AUV. In Proceedings of IEEE International Conference on Fuzzy Systems and Knowledge Discovery, IEEE, Washington, USA, vol. 4, pp. 131–135, 2009.

    Google Scholar 

  27. X. Kang, H. Xu, X. Feng. Fuzzy logic based behavior fusion for multi-AUV formation keeping in uncertain ocean environment. In Proceedings of IEEE Biloxi-Marine Technology for Our Future: Global and Local Challenges, IEEE, Biloxi, USA, pp. 1–7, 2009.

    Google Scholar 

  28. K. D. Do. Formation tracking control of unicycle-type mobile robots with limited sensing ranges. IEEE Transactions on Control Systems Technology, vol. 16, no. 3, pp. 527–538, 2008.

    Article  Google Scholar 

  29. D. Sun, C. Wang, W. Shang, G. Feng. A synchronization approach to trajectory tracking of multiple mobile robots while maintaining time-varying formations. IEEE Transactions on Robotics, vol. 25, no. 5, pp. 1074–1086, 2009.

    Article  Google Scholar 

  30. J. Ghommam, F. Mnif. Coordinated path-following control for a group of under actuated surface vessels. IEEE Transactions on Industrial Electronics, vol. 56, no. 10, pp. 3951–3963, 2009.

    Article  Google Scholar 

  31. K. Teo, K. W. Ong, H. C. Lai. Obstacle detection, avoidance and anti collision for MEREDITH AUV. In Proceedings of IEEE Biloxi-Marine Technology for Our Future: Global and Local Challenges, IEEE, Biloxi, USA, pp. 1–10, 2009.

    Google Scholar 

  32. [Online], Available: http://oceanexplorer.noaa.gov/explorations/08auvfest/background/auvs/auvs.html.

  33. J. G. Bellingham, C. A. Goudey, T. R. Consi, J. W. Bales, D. K. Atwood, J. J. Leonard, C. Chryssostomidis. A second generation survey AUV. In Proceedings of IEEE Symposium on Autonomous Underwater Vehicle Technology, IEEE, Cambridge, USA, pp. 148–155, 1994.

    Chapter  Google Scholar 

  34. L. R. Fodrea. Obstacle Avoidance Control for the REMUS Autonomous Underwater Vehicle, Master dissertation, Naval Postgraduate School, Monterey, USA, 2002.

    Google Scholar 

  35. C. D. Chuhran. Obstacle Avoidance Control in the Vertical Plane for the REMUS Autonomous Underwater Vehicle, Ph.D. dissertation, Naval Postgraduate School, Monterey, USA, 2003.

    Google Scholar 

  36. J. C. Hyland, F. J. Taylor. Mine avoidance techniques for underwater vehicles. IEEE Journal of Oceanic Engineering, vol. 18, no. 3, pp. 340–350, 1993.

    Article  Google Scholar 

  37. C. W. Chen, J. S. Kouh, J. F. Tsai. Modeling and simulation of an AUV simulator with guidance system. IEEE Journal of Oceanic Engineering, vol. 38, no. 2, pp. 211–225, 2013.

    Article  Google Scholar 

  38. S. Wadoo, P. Kachroo. Autonomous Underwater Vehicles, London, UK: CRC Press, 2011.

    Google Scholar 

  39. L. Paull, S. Saeedi, M. Seto, H. Li. AUV navigation and localization: A review. IEEE Journal of Oceanic Engineering, vol. 39, no. 1, pp. 131–149, 2014.

    Article  Google Scholar 

  40. Y. T. Wang, W. S. Yan, W. Yan. A leader-follower formation control strategy for AUVs based on line-of-sight guidance. In Proceedings of IEEE International Conference on Mechatronics and Automation, IEEE, Changchun, China, pp. 4863–4867, 2009.

    Google Scholar 

  41. W. Dong, J. A. Farrell. Formation control of multiple underactuated surface vessels. IET Control Theory & Applications, vol. 2, no. 12, pp. 1077–1085, 2008.

    Article  MathSciNet  Google Scholar 

  42. N. Burlutskiy, Y. Touahmi, B. H. Lee. Power efficient formation configuration for centralized leader-follower AUVs control. Journal of Marine Science and Technology, vol. 17, no. 3, pp. 315–329, 2012.

    Article  Google Scholar 

  43. R. Amin, A. A. Khayyat, K. G. Osgouie. Neural networks control of autonomous underwater vehicle. In Proceedings of the 2nd International Conference on Mechanical and Electronics Engineering, IEEE, Kyoto, Japan, vol. 2, pp.V2-117–V2-121, 2010.

    Google Scholar 

  44. C. A. Kitts, I. Mas. Cluster space specification and control of mobile multi-robot systems. IEEE/ASME Transactions on Mechatronics, vol. 14, no. 2, pp. 207–218, 2009.

    Article  Google Scholar 

  45. M. N. Soorki, H. A. Talebi, S. K. Y. Nikravesh. A robust dynamic leader-follower formation control with active obstacle avoidance. In Proceedings of IEEE International Conference on System, Man, and Cybernetics, IEEE, Anchorage, USA, pp. 1932–1937, 2011.

    Google Scholar 

  46. R. Ghabcheloo, A. P. Aguiar, A. Pascoal, C. Silvestre, I. Kaminer, J. Hespanha. Coordinated path-following control of multiple underactuated autonomous vehicles in the presence of communication failures. In Proceedings of the 45th IEEE Conference on Decision and Control, IEEE, San Diego, USA, pp. 4345–4350, 2006.

    Chapter  Google Scholar 

  47. E. Borhaug, K. Y. Pettersen. Formation control of 6-DOF Euler-Lagrange systems with restricted inter-vehicle communication. In Proceedings of the 45th IEEE Conference on Decision and Control, IEEE, San Diego, USA, pp. 5718–5723, 2006.

    Chapter  Google Scholar 

  48. D. van der Walle, B. Fidan, A. Sutton, C. B. Yu, B. D. O. Anderson. Non-hierarchical UAV formation control for surveillance tasks. In Proceedings of American Control Conference, IEEE, Seattle, USA, pp. 777–782, 2008.

    Google Scholar 

  49. J. A. Marshall, D. Tsai. Periodic formations of multivehicle systems. IET Control Theory & Applications, vol. 5, no. 2, pp. 389–396, 2011.

    Article  MathSciNet  Google Scholar 

  50. L. Brinon-Arranz, A. Seuret, C. Canudas-de-Wit. Collaborative estimation of gradient direction by a formation of AUVs under communication constraints. In Proceedings of the 50th IEEE Conference on Decision and Control and European Control Conference, IEEE, Orlando, USA, pp. 5583–5588, 2011.

    Chapter  Google Scholar 

  51. L. Brinon-Arranz, A. Seuret, C. C. De Wit. Translation control of a fleet circular formation of AUVs under finite communication range. In Proceedings of IEEE Decision and Control and the 28th Chinese Control Conference, IEEE, China, pp. 8345–8350, 2009.

    Google Scholar 

  52. T. Keviczky, F. Borrelli, K. Fregene, D. Godbole, G. J. Balas. Decentralized receding horizon control and coordination of AUV formations. IEEE Transactions on Control Systems Technology, vol. 16, no. 1, pp. 19–33, 2008.

    Article  Google Scholar 

  53. S. Liu, D. Sun, C. Zhu. Coordinated motion planning for multiple mobile robots along designed paths with formation requirement. IEEE/ASME Transactions on Mechatronics, vol. 16, no. 6, pp. 1021–1031, 2011.

    Article  Google Scholar 

  54. J. Wang, X. B. Wu, Z. L. Xu. Decentralized formation control and obstacles avoidance based on potential field method. In Proceedings of International Conference on Machine Learning and Cybernetics, IEEE, Dalian, China, pp. 803–808, 2006.

    Google Scholar 

  55. M. Defoort, T. Floquet, A. Kokosy, W. Perruquetti. Slidingmode formation control for cooperative autonomous mobile robots. IEEE Transactions on Industrial Electronics, vol. 55, no. 11, pp. 3944–3953, 2008.

    Article  Google Scholar 

  56. Y. S. Jung, K. W. Lee, S. Y. Lee, M. H. Choi, B. H. Lee. An efficient underwater coverage method for multi-AUV with sea current disturbances. International Journal of Control, Automation, and Systems, vol. 7, no. 4, pp. 615–629, 2009.

    Article  Google Scholar 

  57. X. P. Wu, Z. P. Feng, J. M. Zhu, R. Allen. Line of sight guidance with intelligent obstacle avoidance for autonomous underwater vehicles. In Proceedings of IEEE OCEANS, IEEE, Boston, USA, pp. 1–6, 2006.

    Google Scholar 

  58. R. X. Cui, D. M. Xu, W. S. Yan. Formation control of autonomous underwater vehicles under fixed topology. In Proceedings of IEEE International Conference on Control and Automation, IEEE, Guangzhou, China, pp. 2913–2918, 2007.

    Google Scholar 

  59. F. M. Zhang. Geometric cooperative control of particle formations. IEEE Transactions on Automatic Control, vol. 55, no. 3, pp. 800–804, 2010.

    Article  MathSciNet  Google Scholar 

  60. J. Almeida, C. Silvestre, A. Pascoal. Cooperative control of multiple surface vessels in the presence of ocean currents and parametric model uncertainty. International Journal of Robust and Nonlinear Control, vol. 20, no. 14, pp. 1549–1565, 2010.

    Article  MathSciNet  MATH  Google Scholar 

  61. F. Dorfler, B. Francis. Geometric analysis of the formation problem for autonomous robots. IEEE Transactions on Automatic Control, vol. 55, no. 10, pp. 2379–2384, 2010.

    Article  MathSciNet  Google Scholar 

  62. H. Z. Yang, F. M. Zhang. Robust control of horizontal formation dynamics for autonomous underwater vehicles. In Proceedings of IEEE International Conference on Robotics and Automation, IEEE, Shanghai, China, pp. 3364–3369, 2011.

    Google Scholar 

  63. Z. H. Ismail, M. W. Dunnigan. A region boundary-based geometric formation control scheme for multiple Autonomous Underwater Vehicles. In Proceedings of IEEE International Conference on Electrical, Control and Computer Engineering, IEEE, Pahang, Malaysia, pp. 491–496, 2011.

    Google Scholar 

  64. Z. H Ismail, N. Sarman, M. W. Dunnigan. Dynamic region boundary-based control scheme for Multiple Autonomous Underwater Vehicles. In Proceedings of IEEE OCEANS, IEEE, Yeosu, South Korea, pp. 1–6, 2012.

    Google Scholar 

  65. H. Z. Yang, C. F. Wang, F. M. Zhang. Robust geometric formation control of multiple autonomous underwater vehicles with time delays. In Proceedings of American Control Conference, IEEE, Washington, USA, pp. 1380–1385, 2013.

    Google Scholar 

  66. H. Z. Yang, F. M. Zhang. Geometric formation control for autonomous underwater vehicles. In Proceedings of IEEE International Conference on Robotics and Automation, IEEE, Anchorage, USA, pp. 4288–4293, 2010.

    Google Scholar 

  67. L. J. Zhang, X. Qi. Muti-AUV's formation coordinated control in the presence of communication losses. In Proceedings of the 32nd Chinese Control Conference, IEEE, Xi'an, China, pp. 3089–3094, 2013.

    Google Scholar 

  68. X. B. Xiang, C. Liu, L. Lapierre, B. Jouvencel. Synchronized path following control of multiple homogenous underactuated AUVs. Journal of Systems Science and Complexity, vol. 25, no. 1, pp. 71–89, 2012.

    Article  MathSciNet  MATH  Google Scholar 

  69. X. B. Xiang, C. Liu, B. Jouvencel. Synchronized path following control for multiple underactuated AUVs. In Proceedings of the 29th Chinese Control Conference, IEEE, Beijing, China, pp. 3785–3790, 2010.

    Google Scholar 

  70. W. S. Yan, R. X. Cui, D. M. Xu. Formation control of underactuated autonomous underwater vehicles in horizontal plane. In Proceedings of IEEE International Conference on Automation and Logistics, IEEE, Qingdao, China, pp. 822–827, 2008.

    Google Scholar 

  71. Y. Lan, G. F. Yan, Z. Y. Lin. Synthesis of distributed control of coordinated path following based on hybrid approach. IEEE Transactions on Automatic Control, vol. 56, no. 5, pp. 1170–1175, 2011.

    Article  MathSciNet  Google Scholar 

  72. H. Z. Yang, C. F. Wang, F. M. Zhang. A decoupled controller design approach for formation control of autonomous underwater vehicles with time delays. IET Control Theory & Applications, vol. 7, no. 15, pp. 1950–1958, 2013.

    Article  MathSciNet  Google Scholar 

  73. X. B. Xiang, B. Jouvencel, O. Parodi. Coordinated formation control of multiple autonomous underwater vehicles for pipeline inspection. International Journal of Advanced Robotic Systems, vol. 7, no. 1, pp. 75–84, 2010.

    Google Scholar 

  74. D. P. Jiang, Y. J. Pang, Z. B. Qin. Coordinated control of multiple autonomous underwater vehicle system. In Proceedings of the 8th World Congress on Intelligent Control and Automation, IEEE, Jinan, China, pp. 4901–4906, 2010.

    Google Scholar 

  75. J. Evans, Y. Petillot, P. Redmond, M. Wilson, D. Lane. AUTOTRACKER: AUV embedded control architecture for autonomous pipeline and cable tracking. In Proceedings of IEEE OCEANS, IEEE, San Diego, USA, vol. 5, pp. 2651–2658, 2003.

    Google Scholar 

  76. A. Caiti, A. Munafo. Cooperative distributed behaviours of an AUV network for asset protection with communication constraints. In Proceedings of IEEE OCEANS, IEEE, Santander, Spain, pp. 1–6, 2011.

    Google Scholar 

  77. Z. L. Hu, C. Ma, L. X. Zhang, A. Halme, T. Hayat, B. Ahmad. Formation control of impulsive networked autonomous underwater vehicles under fixed and switching topologies. Neurocomputing, vol. 147, pp. 291–298, 2015.

    Article  Google Scholar 

  78. D. Q. Zhu, H. Huang, S. X. Yang. Dynamic task assignment and path planning of multi-AUV system based on an improved self-organizing map and velocity synthesis method in three-dimensional underwater workspace. IEEE Transactions on Cybernetics, vol. 43, no. 2, pp. 504–514, 2013.

    Article  Google Scholar 

  79. D. R. Yoerger, M. Jakuba, A. M. Bradley, B. Bingham. Techniques for deep sea near bottom survey using an autonomous underwater vehicle. The International Journal of Robotics Research, vol. 26, no. 1, pp. 41–54, 2007.

    Article  MATH  Google Scholar 

  80. L. Sorbi, G. P. De Capua, J. Fontaine, L. Toni. A behaviourbased mission planner for cooperative autonomous underwater vehicles. Marine Technology Society Journal, vol. 46, no. 2, pp. 32–44, 2012.

    Article  Google Scholar 

  81. Q. R. Zhang. A hierarchical global path planning approach for AUV based on genetic algorithm. In Proceedings of IEEE International Conference on Mechatronics and Automation,IEEE, Luoyang, China, pp. 1745–1750, 2006.

    Google Scholar 

  82. Y. Kitamura, T. Tanaka, F. Kishino, M. Yachida. 3-D path planning in a dynamic environment using an octree and an artificial potential field. In Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, IEEE, Pittsburgh, USA, vol. 2, pp. 474–481, 1995.

    Google Scholar 

  83. H. G. Tanner, G. J. Pappas, V. Kumar. Leader-toformation stability. IEEE Transactions on Robotics and Automation, vol. 20, no. 3, pp. 443–455, 2004.

    Article  Google Scholar 

  84. N. E. Leonard, E. Fiorelli. Virtual leaders, artificial potentials and coordinated control of groups. In Proceedings of the 40th IEEE Conference on Decision and Control, IEEE, Orlando, USA, vol. 3, pp. 2968–2973, 2001.

    Article  Google Scholar 

  85. Z. H. Zhou, J. Yuan, W. X. Zhang, J. P. Zhao. Virtualleader- follower structure and finite-time controller based cooperative control of multiple autonomous underwater vehicles. In Proceedings of the 24th IEEE Chinese Control and Decision Conference, IEEE, Taiyuan, China, pp. 3670–3675, 2012.

    Google Scholar 

  86. X. Kang, H. Xu, X. Feng. Fuzzy logic based behaviour fusion for multi-AUV formation keeping in uncertain ocean environment. In Proceedings of MTS/IEEE Biloxi-Marine Technology for Our Future: Global and Local Challenges, IEEE, Biloxi, USA, pp. 1–7, 2009.

    Google Scholar 

  87. W. Zhang, J. H. Hu. Optimal multi-agent coordination under tree formation constraints. IEEE Transactions on Automatic Control, vol. 53, no. 3, pp. 692–705, 2008.

    Article  MathSciNet  Google Scholar 

  88. S. Fan, Z. Feng, L. Lian. Collision free formation control for multiple autonomous underwater vehicles. In Proceedings of IEEE OCEANS, IEEE, Sydney, Australia, pp. 1–4, 2010.

    Google Scholar 

  89. L. Lapierre, B. Jouvencel. Robust nonlinear path-following control of an AUV. IEEE Journal of Oceanic Engineering, vol. 33, no. 2, pp. 89–102, 2008.

    Article  Google Scholar 

  90. P. Batista, C. Silvestre, P. Oliveira. A sensor-based controller for homing of underactuated AUVs. IEEE Transactions on Robotics, vol. 25, no. 3, pp. 701–716, 2009.

    Article  Google Scholar 

  91. J. E. Refsnes, A. J. Sorensen, K. Y. Pettersen. Modelbased output feedback control of slender-body underactuated AUVs: Theory and experiments. IEEE Transactions on Control Systems Technology, vol. 16, no. 5, pp. 930–946, 2008.

    Article  Google Scholar 

  92. M. F. Fallon, J. Folkesson, H. McClelland, J. J. Leonard. Relocating underwater features autonomously using sonarbased SLAM. IEEE Journal of Oceanic Engineering, vol. 38, no. 3, pp. 500–513, 2013.

    Article  Google Scholar 

  93. L. Paull, M. Seto, J. J. Leonard. Decentralized cooperative trajectory estimation for autonomous underwater vehicles. In Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, IEEE, Chicago, USA, pp. 184–191, 2014.

    Google Scholar 

  94. M. Barisic, Z. Vukic, N. Miskovic. Decentralized control functions in trajectory guidance of a non-holonomic AUV. In Proceedings of the 18th Mediterranean Conference on Control & Automation, IEEE, Marrakech, Morocco, pp. 1194–1199, 2010.

    Chapter  Google Scholar 

  95. N. V. Nagul. A proportional distribution of AUVs under decentralized control. In Proceedings of the 36th International Convention on Information & Communication Technology Electronics & Microelectronics, IEEE, Opatija, Croatia, pp. 1043–1048, 2013.

    Google Scholar 

  96. E. Borhaug, A. Pavlov, K. Y. Pettersen. Cross-track formation control of underactuated autonomous underwater vehicles. Lecture Notes in Group Coordination and Cooperative Control, Berlin Heidelberg, Germany: Springer, vol. 336, pp. 35–54, 2006.

    Article  MathSciNet  MATH  Google Scholar 

  97. E. F. Yang, D. B. Gu. Nonlinear formation-keeping and mooring control of multiple autonomous underwater vehicles. IEEE/ASME Transactions on Mechatronics, vol. 12, no. 2, pp. 164–178, 2007.

    Article  MathSciNet  Google Scholar 

  98. E. Borhaug, A. Pavlov, K. Y. Pettersen. Straight line path following for formations of underactuated underwater vehicles. In Proceedings of the 46th IEEE Conference on Decision and Control, IEEE, New Orleans, USA, pp. 2905–2912, 2007.

    Google Scholar 

  99. A. Caiti, K. Grythe, J. M. Hovem, S. M. Jesus, A. Lie, A. Munafo, T. A. Reinen, A. Silva, F. Zabel. Linking acoustic communications and network performance: Integration and experimentation of an underwater acoustic network. IEEE Journal of Oceanic Engineering, vol. 38, no. 4, pp. 758–771, 2013.

    Article  Google Scholar 

  100. S. H. Li, X. Y. Wang. Finite-time consensus algorithms for multiple AUVs. In Proceedings of the 32nd IEEE Chinese Control Conference, IEEE, Xi'an, China, pp. 5747–5752, 2013.

    Google Scholar 

  101. S. H. Li, X. Y. Wang. Finite-time consensus and collision avoidance control algorithms for multiple AUVs. Automatica, vol. 49, no. 11, pp. 3359–3367, 2013.

    Article  MathSciNet  MATH  Google Scholar 

  102. I. A. F. Ihle, R. Skjetne, T. I. Fossen. Nonlinear Formation control of marine craft with experimental results. In Proceedings of the 43rd IEEE Conference on Decision and Control, IEEE, Nassau, Bahamas, vol. 1, pp. 680–685, 2004.

    Google Scholar 

  103. S. Y. Wang, C. W. Zheng. A hierarchical evolutionary trajectory planner for spacecraft formation reconfiguration. IEEE Transactions on Aerospace and Electronic Systems, vol. 48, no. 1, pp. 279–289, 2012.

    Article  Google Scholar 

  104. I. F. Ihle, M. Arcak, T. I. Fossen. Passivity-based designs for synchronized path-following. Automatica, vol. 43, no. 9, pp. 1508–1518, 2007.

    Article  MathSciNet  MATH  Google Scholar 

  105. Y. Wang, W. Yan, J. Li. Passivity-based formation control of autonomous underwater vehicles. IET Control Theory & Applications, vol. 6, no. 4, pp. 518–525, 2012.

    Article  MathSciNet  Google Scholar 

  106. Y. S. Jung, K.W. Lee, S. Y. Lee, M. H. Choi, B. H. Lee. An efficient underwater coverage method for multi-AUV with sea current disturbances. International Journal of Control, Automation, and Systems, vol. 7, no. 4, pp. 615–629, 2009.

    Article  Google Scholar 

  107. A. P. Aguiar, A.M. Pascoal. Dynamic positioning and waypoint tracking of under actuated AUVs in the presence of ocean currents. International Journal of Control, vol. 80, no. 7, pp. 1092–1108, 2007.

    Article  MathSciNet  MATH  Google Scholar 

  108. A. P. Aguiar, A. M. Pascoal. Dynamic positioning and way-point tracking of underactuated AUVs in the presence of ocean currents. In Proceedings of the 41st IEEE Conference on Decision and Control, IEEE, Las Vegas, USA, vol. 2, pp. 2105–2110, 2002.

    Article  MATH  Google Scholar 

  109. M. Chitre, S. Shahabudeen, M. Stojanovic. Underwater acoustic communications and networking: Recent advances and future challenges. Marine Technology Society Journal, vol. 42, no. 1, pp. 103–116, 2008.

    Article  Google Scholar 

  110. B. Benson, Y. Li, R. Kastner, B. Faunce, K. Domond, D. Kimball, C. Schurgers. Design of a low-cost underwater acoustic modem. IEEE Embedded Systems Letters, vol. 2, no. 3, pp. 58–61, 2010.

    Article  Google Scholar 

  111. W. S. Ross, R. S. Kennedy. An Investigation of Atmospheric Optically Scattered Non-line-of-sight Communication Links, USA: Research Laboratory of Electronics Cambridge Massachusetts, 1980.

    Google Scholar 

  112. J. Heidemann, U. Mitra, J. Preisig, M. Stojanovic, M. Zorzi, L. Cimini. Guest editorial-underwater wireless communication networks. IEEE Journal on Selected Areas in Communications, vol. 26, no. 9, pp. 1617–1619, 2008.

    Article  Google Scholar 

  113. I. S. Kulkarni, D. Pompili. Task allocation for networked autonomous underwater vehicles in critical missions. IEEE Journal on Selected Areas in Communications, vol. 28, no. 5, pp. 716–727, 2010.

    Article  Google Scholar 

  114. X. Z. Cheng, H. N. Shu, Q. L. Liang, D. H. C. Du. Silent positioning in underwater acoustic sensor networks. IEEE Transactions on Vehicular Technology, vol. 57, no. 3, pp. 1756–1766, 2008.

    Article  Google Scholar 

  115. I. F. Akyildiz, D. Pompili, T. Melodia. Underwater acoustic sensor networks: Research challenges. Ad Hoc Networks, vol. 3, no. 3, pp. 257–279, 2005.

    Article  Google Scholar 

  116. M. Stojanovic, L. Freitag, J. Leonard, P. Newman. A network protocol for multiple AUV localization. In Proceedings of IEEE OCEANS, IEEE, Biloxi, USA, vol. 1, pp. 604–611, 2002.

    Google Scholar 

  117. L. Brignone, J. Alves, J. Opderbecke. GREX sea trials: First experiences in multiple underwater vehicle coordination based on acoustic communication. In Proceedings of IEEE OCEANS, IEEE, Bremen, Germany, pp. 1–6, 2009.

    Google Scholar 

  118. T. Shimura, H. Ochi, Y. Watanabe. First experiment result of time-reversal communication in deep ocean. Japanese Journal of Applied Physics, vol. 46, no. 7B, pp. 4956, 2007.

    Article  Google Scholar 

  119. I. F. Akyildiz, D. Pompili, T. Melodia. Challenges for efficient communication in underwater acoustic sensor networks. ACM Sigbed Review, vol. 1, no. 2, pp. 3–8, 2004.

    Article  Google Scholar 

  120. J. J. Leonard, A. A. Bennett, C. M. Smith, H. J. S. Feder. Autonomous underwater vehicle navigation. In Proceedings of IEEE ICRA Workshop on Navigation of Outdoor Autonomous Vehicles, Leuven, Belgium, 1998.

    Google Scholar 

  121. P. L. Kempker, A. C. Ran, J. H. van Schuppen. A formation flying algorithm for autonomous underwater vehicles. In Proceedings of the 50th IEEE Conference on Decision and Control and European Control Conference, IEEE, Orlando, USA, pp. 1293–1298, 2011.

    Chapter  Google Scholar 

  122. G. F. Trecate, A. Buffa, M. Gati. Analysis of coordination in multi-agent systems through partial difference equations. IEEE Transactions on Automatic Control, vol. 51, no. 6, pp. 1058–1063, 2006.

    Article  Google Scholar 

  123. E. R. B. Marques, J. Pinto, S. Kragelund, P. S. Dias, L. Madureira, A. Sousa, M. Correia, H. Ferreira, R. Goncalves, R. Martins, D. P. Horner, A. J. Healey, G. M. Goncalves, J. B. Sousa. AUV control and communication using underwater acoustic networks. In Proceedings of IEEE OCEANS Europe, IEEE, Aberdeen, UK, pp. 1–6, 2007.

    Google Scholar 

  124. P. Ogren, N. E. Leonard. Obstacle avoidance in formation. In Proceedings of IEEE International Conference on Robotics and Automation, IEEE, Taipei, China, vol. 2, pp. 2492–2497, 2003.

    Google Scholar 

  125. M. Soulignac. Feasible and optimal path planning in strong current fields. IEEE Transactions on Robotics, vol. 27, no. 1, pp. 89–98, 2011.

    Article  Google Scholar 

  126. J. Guo, S. W. Cheng, T. C. Liu. AUV obstacle avoidance and navigation using image sequences of a sector scanning sonar. In Proceedings of IEEE International Symposium on Underwater Technology, IEEE, Tokyo, Japan, pp. 223–227, 1998.

    Google Scholar 

  127. Q. Q. Jia, G. Li. Formation control and obstacle avoidance algorithm of multiple autonomous underwater vehicles (AUVs) based on potential function and behaviour rules. In Proceedings of IEEE International Conference on Automation and Logistics, IEEE, Jinan, China, pp. 569–573, 2007.

    Google Scholar 

  128. H. G. Tanner, G. J. Pappas, V. Kumar. Leader-toformation stability. IEEE Transactions on Robotics and Automation, vol. 20, no. 3, pp. 443–455, 2004.

    Article  Google Scholar 

  129. Z. Zeng, K. Sammut, A, Lammas, F. P. He, Y. H. Tang. Efficient path re-planning for AUVs operating in spatiotemporal currents. Journal of Intelligent Robot Systems, vol. 79, no. 1, pp. 135–153, 2015.

    Article  Google Scholar 

  130. T. Kopfstedt, M. Mukai, M. Fujita, O. Sawodny. Formation control for mobile robots in partially known environments using mixed integer programming and fuzzy systems. In Proceedings of International Joint Conference SICEICASE, IEEE, Busan, Korea, pp. 1832–1837, 2006.

    Google Scholar 

  131. P. Rui. Multi-UAV formation maneuvering control based on Q-Learning fuzzy controller. In Proceedings of the 2nd International Conference on Advanced Computer Control, IEEE, Shenyang, China, vol. 4, pp. 252–257, 2010.

    Google Scholar 

  132. Y. Lee, Y. Kim, L. J. Kohout. An intelligent collision avoidance system for AUVs using fuzzy relational products. Information Sciences, vol. 158, pp. 209–232, 2004.

    Article  Google Scholar 

  133. L. D. Bui, Y. G. Kim. An obstacle-avoidance technique for autonomous underwater vehicles based on BK-products of fuzzy relation. Fuzzy Sets and Systems, vol. 157, no. 4, pp. 560–577, 2006.

    Article  MathSciNet  Google Scholar 

  134. J. Zhang, L. Q. Wang, M. J. Zhang. Path planning for underwater robot by fuzzy decision making method. Journal of Harbin Engineering University, vol. 22, no. 1, pp. 49–54, 2010. (in Chinese)

    Google Scholar 

  135. D. Q. Zhu, Y. Y. Yang, M. Z. Yan. Path planning algorithm for AUV based on a Fuzzy-PSO in dynamic environments. In Proceedings of the 8th IEEE International Conference on Fuzzy Systems and Knowledge Discovery, IEEE, Shanghai, China, vol. 1, pp. 525–530, 2011.

    Google Scholar 

  136. X. M. Liu, L. Peng, J. W. Li, Y. R. Xu. Obstacle avoidance using fuzzy neural networks. In Proceedings of IEEE International Symposium on Underwater Technology, IEEE, Tokyo, Japan, pp. 282–286, 1998.

    Google Scholar 

  137. H. Sayyaadi, T. Ura, T. Fujii. Collision avoidance controller for AUV systems using stochastic real value reinforcement learning method. In Proceedings of the 39th IEEE International Conference SICE, IEEE, Iizuka, Japan, pp. 165–170, 2000.

    Google Scholar 

  138. A. C. Schultz. Using a Genetic Algorithm to Learn Strategies for Collision Avoidance and Local Navigation, Washington, USA: Naval Research Lab Washington DC, 1990.

    Google Scholar 

  139. F. G. Ding, P. Jiao, X. Q. Bian, H. J. Wang. AUV local path planning based on virtual potential field. In Proceedings of IEEE International Conference on Mechatronics and Automation, IEEE, Niagara Falls, Canada, vol. 4, pp. 1711–1716, 2005.

    Google Scholar 

  140. H. Zou, X. Q. Bian, Z. H. Chang. A real-time obstacle avoidance method for AUV using a multibeam forward looking sonar. Robot, vol. 29, no. 1, pp. 82–87, 2007.

    Google Scholar 

  141. E. M. Sozer, M. Stojanovic, J. G. Proakis. Underwater acoustic networks. IEEE Journal of Oceanic Engineering, vol. 25, no. 1, pp. 72–83, 2000.

    Article  Google Scholar 

  142. R. C. Joshi, V. K. Thakar. Congestion control in communication networks using discrete sliding mode control. In Proceedings of the 31st Chinese Control Conference, IEEE, Hefei, China, pp. 5553–5557, 2012.

    Google Scholar 

  143. X. J. O. Onunga, R. W. Donaldson. A simple packet retransmission strategy for throughput and delay enhancement on power line communication channels. IEEE Transactions on Power Delivery, vol. 8, no. 3, pp. 818–826, 1993.

    Article  Google Scholar 

  144. J. Korhonen, Y. Wang. Effect of packet size on loss rate and delay in wireless links. In Proceedings of IEEE Conference on Wireless Communications and Networking, IEEE, New Orleans, USA, vol. 3, pp. 1608–1613, 2005.

    Google Scholar 

  145. Y. G. Sun, L. Wang, G. M. Xie. Average consensus in networks of dynamic agents with switching topologies and multiple time-varying delays. Systems & Control Letters, vol. 57, no. 2, pp. 175–183, 2008.

    Article  MathSciNet  MATH  Google Scholar 

  146. B. Jouvencel, V. Creuze, P. Baccou. A new method for multiple AUV coordination: A reactive approach. In Proceedings of the 8th IEEE International Conference on Emerging Technologies and Factory Automation, IEEE, Antibes-Juan les Pins, France, vol. 1, pp. 51–55, 2001.

    Google Scholar 

  147. P. K. Paim, B. Jouvencel, L. Lapierre. A reactive control approach for pipeline inspection with an AUV. In Proceedings of MTS/IEEE OCEANS, IEEE, Washington, USA, vol. 1, pp. 201–206, 2005.

    Google Scholar 

  148. H. Kawano. Real-time obstacle avoidance for underactuated autonomous underwater vehicles in unknown vortex sea flow by the MDP approach. In Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, IEEE, Beijing, China, pp. 3024–3031, 2006.

    Google Scholar 

  149. W. H. Luo, J. Peng, J. Wang. An improved parameterized approach for real time optimal motion planning of AUV moving in dynamic environment. In Proceedings of the 6th IEEE Conference on Robotics, Automation and Mechatronics, IEEE, Manila, Philippines, pp. 103–108, 2013.

    Google Scholar 

  150. L. P. Ellekilde, J. W. Perram. Tool center trajectory planning for industrial robot manipulators using dynamical systems. The International Journal of Robotics Research, vol. 24, no. 5, pp. 385–396, 2005.

    Article  Google Scholar 

  151. P. Ghorbanian, S. G. Nersesov, H. Ashrafiuon. Obstacle avoidance in multi-vehicle coordinated motion via stabilization of time varying sets. In Proceedings of American Control Conference, IEEE, San Francisco, USA, pp. 3381–3386, 2011.

    Google Scholar 

  152. S. G. Nersesov, P. Ghorbanian, A. G. Aghdam. Stabilization of sets with application to multi-vehicle coordinated motion. Automatica, vol. 46, no. 9, pp. 1419–1427, 2010.

    Article  MathSciNet  MATH  Google Scholar 

  153. A. P. Aguiar, J. P. Hespanha. Trajectory-tracking and path-following of underactuated autonomous vehicles with parametric modeling uncertainty. IEEE Transactions on Automatic Control, vol. 52, no. 8, pp. 1362–1379, 2005.

    Article  MathSciNet  Google Scholar 

  154. W. Ren, N. Sorensen. Distributed coordination architecture for multi-robot formation control. Robotics and Autonomous Systems, vol. 56, no. 4, pp. 324–333, 2008.

    Article  MATH  Google Scholar 

  155. R. Skjetne, S. Moi, T. I. Fossen. Nonlinear formation control of marine craft. In Proceedings of the 41st IEEE Conference on Decision and Control, IEEE, Las Vegas, USA, vol. 2, pp. 1699–1704, 2002.

    Article  Google Scholar 

  156. H. Bai, M. Arcak, J. T. Wen. Adaptive design for reference velocity recovery in motion coordination. Systems & Control Letter, vol. 57, no. 8, pp. 602–610, 2008.

    Article  MathSciNet  MATH  Google Scholar 

  157. M. Arcak. Passivity as a design tool for group coordination. IEEE Transactions on Automatic Control, vol. 52, no. 8, pp. 1380–1390, 2007.

    Article  MathSciNet  Google Scholar 

  158. W. Wang, J. Q. Yi, D. B. Zhao, D. T. Liu. Design of a stable sliding-mode controller for a class of second-order underactuated system. IEE Proceedings-Control Theory and Applications, vol. 151, no. 6, pp. 683–690, 2004.

    Article  Google Scholar 

  159. J. Cheng, J. Q. Yi, D. B. Zhao. Design of a sliding mode controller for trajectory tracking problem of marine vessels. IET Control Theory & Applications, vol. 1, no. 1, pp. 233–237, 2007.

    Article  MathSciNet  Google Scholar 

  160. R. Ghabcheloo, A. P. Aguiar, A. Pascoal, C. Silvestre, I. Kaminer, J. Hespanha. Coordinated path-following in the presence of communication losses and time delays. SIAM Journal on Control and Optimization, vol. 48, no. 1, pp. 234–265, 2009.

    Article  MathSciNet  MATH  Google Scholar 

  161. B. Subudhi, S. S. Ge. Sliding-mode-observer-based adaptive slip ratio control for electric and hybrid vehicles. IEEE Transactions on Intelligent Transportation Systems, vol. 13, no. 4, pp. 1617–1626, 2012.

    Article  Google Scholar 

  162. P. Millan, L. Orihuela, I. Jurado, F. R. Rubio. Formation control of autonomous underwater vehicles subject to communication delays. IEEE Transactions on Control Systems Technology, vol. 22, no. 2, pp. 770–777, 2014.

    Article  Google Scholar 

  163. D. Angeli, E. Mosca. Lyapunov-based switching supervisory control of nonlinear uncertain systems. IEEE Transactions on Automatic Control, vol. 47, no. 3, pp. 500–505, 2002.

    Article  MathSciNet  Google Scholar 

  164. Z. L. Hu, C. Ma, L. X. Zhang, A. Halme. Distributed formation control of autonomous underwater vehicles with impulsive information exchanges and disturbances under fixed and switching topologies. In Proceedings of IEEE the 23rd International Symposium on Industrial Electronics, IEEE, Istanbul, Turkey, pp. 99–104, 2014.

    Google Scholar 

  165. Y. C. Cao, W. Ren. Distributed coordinated tracking with reduced interaction via a variable structure approach. IEEE Transactions on Automatic Control, vol. 57, no. 1, pp. 33–48, 2012.

    Article  MathSciNet  Google Scholar 

  166. G. Q. Xia, C. C. Pang, J. Liu. Neural-network-based adaptive observer design for autonomous underwater vehicle in shallow water. In Proceedings of the 9th International Conference on Natural Computation, IEEE, Shenyang, China, pp. 216–221, 2013.

    Google Scholar 

  167. N. E. Leonard, D. A. Paley, F. Lekien, R. Sepulchre, D. M. Fratantoni, R. E. Davis. Collective motion, sensor networks, and ocean sampling. Proceedings of the IEEE, vol. 95, no. 1, pp. 48–74, 2007.

    Article  Google Scholar 

  168. J. A. Marshall, M. E. Broucke, B. A. Francis. Formations of vehicles in cyclic pursuit. IEEE Transactions on Automatic Control, vol. 49, no. 11, pp. 1963–1974, 2004.

    Article  MathSciNet  Google Scholar 

  169. N. Palomeras, J. C. Garcia, M. Prats, J. J. Fern´andez, P. J. Sanz, P. Ridao. A distributed architecture for enabling autonomous underwater Intervention Missions. In Proceedings of the 4th Annual IEEE Systems Conference, IEEE, San Diego, USA, pp. 159–164, 2010.

    Google Scholar 

  170. B. K. Sahu, B. Subudhi, B. K. Dash. Flocking control of multiple autonomous underwater vehicles. In Proceedings of Annual IEEE India Conference, IEEE, Kochi, India, pp. 257–262, 2012.

    Google Scholar 

  171. S. Y. Liu, D. W. Wang, E. Poh. Non-linear output feedback tracking control for AUVs in shallow wave disturbance condition. International Journal of Control, vol. 81, no. 11, pp. 1806–1823, 2008.

    Article  MathSciNet  MATH  Google Scholar 

  172. S. Y. Liu, D. W. Wang, E. K. Poh, Y. G. Wang. Dynamic positioning of AUVs in shallow water environment: Observer and controller design. In Proceedings of IEEE/ASME International Conference on Advanced Intelligent Mechatronics, IEEE, Monterey, USA, pp. 705–710, 2005.

    Google Scholar 

  173. A. Pant, P. Seiler, K. Hedrick. Mesh stability of look-ahead interconnected systems. IEEE Transactions on Automatic Control, vol. 47, no. 2, pp. 403–407, 2002.

    Article  MathSciNet  Google Scholar 

  174. P. M. Lee, S. W. Hong, Y. K. Lim, C. M. Lee, B. H. Jeon, J. W. Park. Discrete-time quasi-sliding mode control of an autonomous underwater vehicle. IEEE Journal of Oceanic Engineering, vol. 24, no. 3, pp. 388–395, 1999.

    Article  Google Scholar 

  175. S. Negahdaripour, S. Cho, K. Y. Joon. Controller design for an autonomous underwater vehicle using nonlinear observers. International Journal of Ocean System Engineering, vol. 1, pp. 16–27, 2011.

    Article  Google Scholar 

  176. J. C. Kinsey, Q. J. Yang, J. C. Howland. Nonlinear dynamic model-based state estimators for underwater navigation of remotely operated vehicles. IEEE Transactions on Control Systems Technology, vol. 22, no. 5, pp. 1845–1854, 2014.

    Article  Google Scholar 

  177. J. B. de Sousa, F. L. Pereira. On coordinated control strategies for networked dynamic control systems-An application to AUVs. In Proceedings of International Symposium of Mathematical Theory of Networks and Systems, Pereslavl-Zalesskii, Russia, 2002.

    Google Scholar 

  178. E. Burian, D. Yoerger, A. Bradley, H. Singh. Gradient search with autonomous underwater vehicles using scalar measurements. In Proceedings of IEEE Symposium on Autonomous Underwater Vehicle Technology, IEEE, Monterey, USA, pp. 86–98, 1996.

    Chapter  Google Scholar 

  179. A. Speranzon. On Control under Communication Constraints in Autonomous Multi-robot Systems, Ph. D. dissertation, Licentiate Thesis, Stockholm, Sweden, 2004.

    Google Scholar 

  180. B. Garau, M. Bonet, A. Alvarez, S. Ruiz, A. Pascual. Path planning for an AUV in realistic oceanic current fields: Application to glider in the western Mediterranean sea. Journal of Maritime Research, vol. 6, no. 2, pp. 5–22, 2009.

    Google Scholar 

  181. D. P. Horner, A. J. Healey, S. P. Kragelund. AUV experiments in obstacle avoidance. In Proceedings of IEEE OCEANS, IEEE, Washington, USA, vol. 2, pp. 1464–1470, 2005.

    Google Scholar 

  182. H. Bing, L. Gang, G. Jiang, W. Hong, N. Nan, L. Yan. A route planning method based on improved artificial potential field algorithm. In Proceedings of IEEE the 3rd International Conference on Communication Software and Networks, IEEE, Xi'an, China, pp. 550–554, 2011.

    Google Scholar 

  183. A. Speranzon. Coordination, Consensus and Communication in Multi-Robot Control Systems, Ph.D. dissertation, Licentiate Thesis, Stockholm, Sweden, 2006.

    Google Scholar 

  184. X. Z. Cheng, H. N. Shu, Q. L. Liang, D. H. C. Du. Silent positioning in underwater acoustic sensor networks. IEEE Transactions on Vehicular Technology, vol. 57, no. 3, pp. 1756–1766, 2008.

    Article  Google Scholar 

  185. A. P. Aguiar, A.M. Pascoal. Dynamic positioning and waypoint tracking of under actuated AUVs in the presence of ocean currents. In Proceedings of the 41st IEEE Conference on Decision and Control, IEEE, Las Vegas, USA, vol. 2, pp. 2105–2110, 2002.

    Article  Google Scholar 

  186. B. Subudhi, K. Mukherjee, S. Ghosh. A static output feedback control design for path following of autonomous underwater vehicle in vertical plane. Ocean Engineering, vol. 63, pp. 72–76, 2013.

    Article  Google Scholar 

  187. X. J. Jing, C. Y. Wang, D. L. Tan. Artificial coordinating field based real-time coordinating collision-avoidance planning for multiple mobile robots. Control Theory and Applications, vol. 21, no. 5, pp. 757–764, 2004. (in Chinese)

    MathSciNet  Google Scholar 

  188. D. P. Horner, A. J. Healey. Use of artificial potential fields for UAV guidance and optimization of WLAN communications. In Proceedings of IEEE/OES Autonomous Underwater Vehicles, IEEE, Sebasco, USA, pp. 88–95, 2004.

    Google Scholar 

  189. H. L. Xu, Y. P. Li. An immune genetic algorithm for AUV local path planning. In Proceedings of the 20th International Offshore and Polar Engineering Conference, ISOPE, Beijing, China, pp. 396–400, 2010.

    Google Scholar 

  190. D. R. Blidberg. The development of autonomous underwater vehicles (AUV); a brief summary. In Proceedings of IEEE International Conference on Robotics and Automation, IEEE, Lee New Hampshire, USA, 2001.

    Google Scholar 

  191. C. C. Sotzing, D. M. Lane. Improving the coordination efficiency of limited-communication multi-autonomus underwater vehicle operations using a multiagent architecture. Journal of Field Robotics, vol. 27, no. 4, pp. 412–419, 2010.

    Article  Google Scholar 

  192. F. Fahimi. Sliding mode formation control for underactuated surface vessels. IEEE Transactions on Robotics, vol. 23, no. 3, pp. 617–622, 2007.

    Article  Google Scholar 

  193. J. P. Desai, J. P. Ostrowski, V. Kumar. Modeling and control of formations of nonholonomic mobile robots. IEEE Transactions on Robotics and Automation, vol. 17, no. 6, pp. 905–908, 2001.

    Article  Google Scholar 

  194. Y. Y. Dai, S. G. Lee. The leader-follower formation control of nonholonomic mobile robots. International Journal of Control, Automation, and Systems, vol. 10, no. 2, pp. 350–361, 2012.

    Article  Google Scholar 

  195. L. Sorbi, G. P. De Capua, L. Toni, J. G. Fontaine. Target detection and recognition: A mission planner for Autonomous Underwater Vehicles. In Proceedings of IEEE OCEANS, IEEE, Waikoloa, USA, pp. 1–5, 2011.

    Google Scholar 

  196. R. Ghabcheloo, I. Kaminer, A. P. Aguiar, A. Pascoal. A general framework for multiple vehicle time-coordinated path following control. In Proceedings of the 2009 conference on American Control Conference, IEEE, Piscataway, USA, pp. 3071–3076, 2009.

    Chapter  Google Scholar 

  197. W. Yan, W. S. Yan, Y. T. Wang, Y. Yao. Formation control of multiple underactuated autonomous underwater vehicles with communication time delays. Fire Control & Command Control, vol. 36, no. 6, pp. 52–55, 2011. (in Chinese)

    Google Scholar 

  198. D. B. Gu, H. S. Hu. Using fuzzy logic to design separation function in flocking algorithms. IEEE Transactions on Fuzzy Systems, vol. 16, no. 4, pp. 826–838, 2008.

    Article  MathSciNet  Google Scholar 

  199. R. O. Saber. Flocking for multi-agent dynamic systems: Algorithms and theory. IEEE Transactions on Automatic Control, vol. 51, no. 3, pp. 401–420, 2006.

    Article  MathSciNet  Google Scholar 

  200. D. B. Gu, Z. Y. Wang. Leader-follower flocking: Algorithms and experiments. IEEE Transactions on Control Systems Technology, vol. 17, no. 5, pp. 1211–1219, 2009.

    Article  Google Scholar 

  201. P. Rattanasiri, P. A. Wilson, A. B. Phillips. Numerical investigation of a fleet of towed AUVs. Ocean Engineering, vol. 80, pp. 25–35, 2014.

    Article  Google Scholar 

  202. B. K. Sahu, M. M. Gupta, B. Subudhi. Fuzzy separation potential function based flocking control of multiple AUVs. In Proceedings of IEEE IFSA World Congress and NAFIPS Annual Meeting, IEEE, Edmonton, Canada, pp. 1429–1434, 2013.

    Google Scholar 

  203. X. B. Xiang, G. H. Xu, Q. Zhang, Z. H. Xiao, X. H. Huang. Coordinated control for multi-AUV systems based on hybrid automata. In Proceedings of IEEE International Conference on Robotics and Biomimetics, IEEE, Sanya, China, pp. 2121–2126, 2007.

    Google Scholar 

  204. S. Sariel, T. Balch, N. Erdogan. Naval mine countermeasure missions. IEEE Robotics & Automation Magazine, vol. 15, no. 1 pp. 45–52, 2008.

    Article  Google Scholar 

  205. F. Y. Bi, Y. J. Wei, J. Z. Zhang, W. Cao. Position-tracking control of underactuated autonomous underwater vehicles in the presence of unknown ocean currents. IET Control Theory & Applications, vol. 4, no. 11, pp. 2369–2380, 2010.

    Article  MathSciNet  Google Scholar 

  206. D. H. Wang, J. Yuan, J. Xu, Z. H. Zhou. Finite-time formation control for autonomous underwater vehicles based on hierarchical leader-follower. Applied Mechanics and Materials, vol. 541–542, pp. 1164–1167, 2014.

    Article  Google Scholar 

  207. L. Ding, Q. L. Han, G. Guo. Network-based leaderfollowing consensus for distributed multi-agent systems. Automatica, vol. 49, no. 7, pp. 2281–2286, 2013.

    Article  MathSciNet  Google Scholar 

  208. P. W. Kimball, S. M. Rock. Mapping of translating, rotating icebergs with an autonomous underwater vehicle. IEEE Journal of Oceanic Engineering, vol. 40, no. 1, pp. 196–208, 2015.

    Article  Google Scholar 

  209. T. Matsuda, T. Maki, T. Sakamaki, T. Ura. State estimation and compression method for the navigation of multiple autonomous underwater vehicles with limited communication traffic. IEEE Journal of Oceanic Engineering, vol. 40, no. 2, pp. 337–348, 2015.

    Article  Google Scholar 

  210. K. Shojaei, M. M. Arefi. On the neuro-adaptive feedback linearising control of underactuated autonomous underwater vehicles in three-dimensional space. IET Control Theory & Applications, vol. 9, no. 8, pp. 1264–1273, 2015.

    Article  MathSciNet  Google Scholar 

  211. S. H. Li, X. Y. Wang, L. J. Zhang. Finite-time output feedback tracking control for autonomous underwater vehicles. IEEE Journal of Oceanic Engineering, vol. 40, no. 3, pp. 727–751, 2015.

    Article  Google Scholar 

  212. Y. Q. Xia, Y. L. Gao, L. P. Yan, M. Y. Fu. Recent progress in networked control systems-A survey. International Journal of Automation and Computing, vol. 12, no. 4, pp. 343–367, 2015.

    Article  Google Scholar 

  213. B. Das, B. Subudhi, B. B. Pati. Adaptive sliding mode formation control of multiple underwater robots. Archives of Control Sciences, vol. 24, no. 4, pp. 515–543, 2014.

    MathSciNet  MATH  Google Scholar 

  214. B. Das, B. Subudhi, B. B. Pati. Co-operative control coordination of a team of underwater vehicles with communication constraints. Transactions of the Institute of Measurement and Control, vol. 38, no. 4, pp. 463–481, 2016.

    Article  Google Scholar 

  215. D. H. Shin, S. T. Kwon, S. H. Park, M. G. Joo. Fuzzy state feedback control for way-point tracking of autonomous underwater vehicle. International Journal of Control and Automation, vol. 6, no. 1, pp. 119–130, 2013.

    Google Scholar 

  216. B. Das, B. Subudhi, B. B. Pati. Employing nonlinear observer for formation control of AUVs under communication constraints. International Journal of Intelligent Unmanned Systems, vol. 3, no. 2–3, pp. 122–155, 2015.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bidyadhar Subudhi.

Additional information

Recommended by Associate Editor Veljko Potkonjak

Bikramaditya Das received the B.Tech. degree in electronics and telecommunications engineering from the Biju Patnaik University of Technology, Rourkela, M.Tech. degree in wireless communication from Department of Electrical Engineering, National Institute of Technology Rourkela, India in 2010, and the Ph.D. degree in control under communication constraints from Department of Electrical Engineering, Veer Surendra Sai University of Technology Odisha, Burla in 2016. He is currently working as assistant professor at Department of Electronics and Telecommunication Engineering, Veer Surendra Sai University of Technology Odisha, Burla. He is an associate member of IEI.

His research interests include formation control of autonomous underwater vehicles, robotics and wireless communication.

ORCID ID: 0000-0001-9734-806X

Bidyadhar Subudhi received the B.Eng. degree in electrical engineering from National Institute of Technology (NIT), Regional Engineering College (REC), India in 1988, the M.Eng. degree in control and instrumentation from Indian Institute of Technology Delhi (IIT), India in 1993, and the Ph.D. degree in control system engineering from University of Sheffield, UK in 2003. He was a post-doctoral research fellow at Department of Electrical & Computer Engineering, National University of Singapore (NUS), Singapore from May to November in 2005. He was a visiting professor in University of Saskatchewan, Canada from May to June in 2009 and also at Asian Institute of Technology (AIT) Bangkok from January to May in 2013. He is a professor at Department Electrical Engineering, National Institute of Technology (NIT), India. He is currently coordinator of Centre of Excellence, Renewable Energy System, Centre of Excellence, Industrial Electronics & Robotics, and head of Computer Centre at NIT. He is also the principal investigator in several research projects funded by Defense Research Development Organization (DRDO), Council of Scientific and Industrial Research (CSIR) and Department of Science and Technology (DST), including an international cooperation project under the UK India Education Research Initiative (UKIERI) scheme. He has published 40 journal papers in prestigious journals such as IEEE Transactions, IET and Elsevier and presented 70 research papers in many international conferences both in India and abroad. He has edited one book and contributed 3 book chapters. He chaired a number of technical sessions in international conferences. He is a fellow of the IET (UK) and senior member of IEEE (USA). He is a regular reviewer of IEEE Transaction on Systems, Man, & Cybernetics, Power Delivery, Control System Technology and Neural Networks and Automatic Control.

His research interests include system identification and adaptive control, networked control system, control of flexible and under water robots, control of renewable energy systems, estimation and filtering with application to power system.

ORCID ID: 0000-003-4383-6783

Bibhuti Bhusan Pati is currently working as a professor in Electrical Engineering Department, Veer Surendra Sai University of Technology Odisha, Burla. He is the fellow of Institution of Engineers, member Indian Society for Technical Education, Bigyan Academy, and Engineering Congress. He has published more than 100 papers in reputed journals and conferences. He is the investigator of many AICTE sponsored projects.

His research of interests include control system and applications to power system.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, B., Subudhi, B. & Pati, B.B. Cooperative formation control of autonomous underwater vehicles: An overview. Int. J. Autom. Comput. 13, 199–225 (2016). https://doi.org/10.1007/s11633-016-1004-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11633-016-1004-4

Keywords

Navigation