Skip to main content
Log in

Landslide susceptibility assessment of the region affected by the 25 April 2015 Gorkha earthquake of Nepal

  • Published:
Journal of Mountain Science Aims and scope Submit manuscript

Abstract

Nepal was hit by a 7.8 magnitude earthquake on 25th April, 2015. The main shock and many large aftershocks generated a large number of coseismic landslips in central Nepal. We have developed a landslide susceptibility map of the affected region based on the coseismic landslides collected from remotely sensed data and fieldwork, using bivariate statistical model with different landslide causative factors. From the investigation, it is observed that most of the coseismic landslides are independent of previous landslides. Out of 3,716 mapped landslides, we used 80% of them to develop a susceptibility map and the remaining 20% were taken for validating the model. A total of 11 different landslide-influencing parameters were considered. These include slope gradient, slope aspect, plan curvature, elevation, relative relief, Peak Ground Acceleration (PGA), distance from epicenters of the mainshock and major aftershocks, lithology, distance of the landslide from the fault, fold, and drainage line. The success rate of 87.66% and the prediction rate of 86.87% indicate that the model is in good agreement between the developed susceptibility map and the existing landslides data. PGA, lithology, slope angle and elevation have played a major role in triggering the coseismic mass movements. This susceptibility map can be used for relocating the people in the affected regions as well as for future land development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

HFT:

Himalayan Frontal Thrust

MBT:

Main Boundary Thrust

MCT:

Main Central Thrust

STD:

South Tibetan Detachment

GMA:

Great Midland Antiform

PGA:

Peak Ground Acceleration

References

  • Adhikari LB, Gautam UP, Koirala BP, et. al. (2015) The aftershock sequence of the 2015 April 25 Gorkha–Nepal earthquake. Geophysical Journal International 203: 2119–2124. DOI: 10.1093/gji/ggv412

    Article  Google Scholar 

  • Alfaro P, Delgado J, García-Tortosa FJ, et. al. (2012) Widespread landslides induced by the Mw 5.1 earthquake of 11 May 2011 in Lorca, SE Spain. Engineering Geology 137-138: 40–52. DOI:10.1016/j.enggeo.2012.04.002

    Article  Google Scholar 

  • Anbalagan R, Kumar R, Lakshmanan K, et. al. (2015) Landslide hazard zonation mapping using frequency ratio and fuzzy logic approach, a case study of Lachung Valley, Sikkim. Geoenvironmental Disasters 2(1): 1–17. DOI: 10.1186/s40677-014-0009-y

    Article  Google Scholar 

  • Avouac JP, Tapponnier P (1993) Kinematic model of active deformation in central Asia. Geophysical Research Letters 20(10): 895–898. DOI:10.1029/93GL00128

    Article  Google Scholar 

  • Bonham-Carter G (1994) Preface. In: Graeme FB-C (ed) Computer Methods in the Geosciences, vol Volume 13. Pergamon, pp xiii–xvii. DOI: 10.1016/B978-0-08-042420-0.50005-5

    Google Scholar 

  • Cardinali M, Galli M, Guzzetti F, et. al. (2006) Rainfall induced landslides in December 2004 in south-western Umbria, central Italy: types, extent, damage and risk assessment. Natural Hazards and Earth System Sciences 6(2): 237–260. DOI: 10.5194/nhess-6-237-2006

    Article  Google Scholar 

  • Çevik E, Topal T (2003) GIS-based landslide susceptibility mapping for a problematic segment of the natural gas pipeline, Hendek (Turkey). Environmental Geology 44(8): 949–962. DOI: 10.1007/s00254-003-0838-6

    Article  Google Scholar 

  • Chen XL, Yu L, Wang MM, et. al. (2014) Brief Communication: Landslides triggered by the Ms = 7.0 Lushan earthquake, China. Natural Hazards and Earth System Sciences 14(5): 1257–1267. DOI: 10.5194/nhess-14-1257-2014

    Article  Google Scholar 

  • Chigira M, Wu X, Inokuchi T, Wang G (2010) Landslides induced by the 2008 Wenchuan earthquake, Sichuan, China. Geomorphology 118(3-4): 225–238. DOI: 10.1016/j.geomorph. 2010.01.003

    Article  Google Scholar 

  • Chigira M, Yagi H (2006) Geological and geomorphological characteristics of landslides triggered by the 2004 Mid Niigta prefecture earthquake in Japan. Engineering Geology 82(4): 202–221. DOI: 10.1016/j.enggeo.2005.10.006

    Article  Google Scholar 

  • Chung CJ, Fabbri A (2003) Validation of Spatial Prediction Models for Landslide Hazard Mapping. Natural Hazards 30(3): 451–472. DOI: 10.1023/B:NHAZ.0000007172.62651.2b

    Article  Google Scholar 

  • Colchen M, Le Fort P, Pêcher A (1986) Annapurna–Manaslu–Ganesh Himal. Centre National de la Recherches Scientifique, Special Publication, Paris

    Google Scholar 

  • Collins BD, and Jibson RW (2015) Assessment of existing and potentiallandslide hazards resulting from the April 25, 2015 Gorkha, Nepal earthquakesequence (ver. 1.1, August 2015): U.S. Geological Survey Open-File Report 2015-1142, p. 50. DOI: 10.3133/ofr20151142

    Google Scholar 

  • Dai FC, Xu C, Yao X, et. al. (2011) Spatial distribution of landslides triggered by the 2008 Ms 8.0 Wenchuan earthquake, China. Journal of Asian Earth Sciences 40: 883–895. DOI: 10.1016/j.jseaes.2010.04.010

    Article  Google Scholar 

  • Dewey JF, Burke ACA (1973) Tibetan, Variscan, and Precambrian basement reactivation: products of continental collision. The Journal of Geology 81(6): 683–692.

    Article  Google Scholar 

  • Dhital MR (2015) Geology of the Nepal Himalaya: Regional Perspective of the Classic Collided Orogen (Regional Geology Reviews). Springer; 2015 edition (February 12, 2015).

    Book  Google Scholar 

  • Douglas J (2003) Earthquake ground motion estimation using strong-motion records: a review of equations for the estimation of peak ground acceleration and response spectral ordinates. Earth-Science Reviews 61(1-2): 43–104. DOI: 10.1016/S0012-8252(02)00112-5

    Article  Google Scholar 

  • Ercanoglu M, Gokceoglu C (2004) Use of fuzzy relations to produce landslide susceptibility map of a landslide prone area (West Black Sea Region, Turkey). Engineering Geology 75(3-4): 229–250. DOI: 10.1016/j.enggeo.2004.06.001

    Article  Google Scholar 

  • Gökceoglu C, Aksoy H (1996) Landslide susceptibility mapping of the slopes in the residual soils of the Mengen region (Turkey) by deterministic stability analyses and image processing techniques. Engineering Geology 44(1-4): 147–161. DOI: 10.1016/S0013-7952(97)81260-4

    Article  Google Scholar 

  • Gorum T, van Westen CJ, Korup O, et. al. (2013) Complex rupture mechanism and topography control symmetry of mass-wasting pattern, 2010 Haiti earthquake. Geomorphology 184: 127–138. DOI: 10.1016/j.geomorph. 2012.11.027

    Article  Google Scholar 

  • Guzzetti F, Carrara A, Cardinali M, Reichenbach P (1999) Landslide hazard evaluation: a review of current techniques and their application in a multi-scale study, Central Italy. Geomorphology 31(1-4): 181–216. DOI: 10.1016/S0169-555X (99)00078-1

    Article  Google Scholar 

  • Guzzetti F, Mondini AC, Cardinali M, et. al. (2012) Landslide inventory maps: New tools for an old problem. Earth-Science Reviews 112(1-2): 42–66. DOI: 10.1016/j.earscirev.2012.02.001

    Article  Google Scholar 

  • Guzzetti F, Reichenbach P, Cardinali M, et. al. (2005) Probabilistic landslide hazard assessment at the basin scale. Geomorphology 72(1-4): 272–299. DOI: 10.1016/j.geomorph.2005.06.002

    Article  Google Scholar 

  • Hagen T (1969) Report on the geological survey of Nepal. Volume 1: Preliminary Reconnaissance. Denkschiiften der Schweizerischen Naturforschenden Gesellschaft, Band LXXXVI/1, p. 185. (with ageological map)

    Google Scholar 

  • Harp EL, Jibson RW (1996) Landslides triggered by the 1994 Northridge, California, earthquake. Bulletin of the Seismological Society of America 86(1 Suppl. B).

    Google Scholar 

  • Harp EL, Keefer DK, Sato HP, et al. (2011) Landslide inventories: The essential part of seismic landslide hazard analyses. Engineering Geology 122(1-2): 9–21. DOI: 10.1016/j. enggeo.2010.06.013

    Article  Google Scholar 

  • Huang RQ, Li WL (2013) Co-Seismic Fault Effects of Landslides Triggered by Wenchuan Ms 8.0 Earthquake, China. In: Huang Y, Wu F, Shi Z, et al. (eds.), New Frontiers in Engineering Geology and the Environment. Springer Berlin Heidelberg. pp 1–11

    Chapter  Google Scholar 

  • Jadda M, Shafri HZM, Mansor SB, et. al. (2009) Landslide susceptibility evaluation and factor effect analysis usingprobabilistic-frequency ratio model. European Journal of Scientific Research 33(4): 654–668.

    Google Scholar 

  • Kargel JS, Leonard GJ, Shugar DH, et. al. (2016) Geomorphic and geologic controls of geohazards induced by Nepal’s 2015 Gorkha earthquake. Science 351(6269): aac8353. DOI: 10.1126/science.aac8353

    Article  Google Scholar 

  • Kayastha P (2015) Landslide susceptibility mapping and factor effect analysis using frequency ratio in a catchment scale: a case study from Garuwa sub-basin, East Nepal. Arabian Journal of Geosciences 8: 8601–8613. DOI: 10.1007/s12517-015-1831-6

    Article  Google Scholar 

  • Keefer DK (1984) Landslides caused by earthquakes. Geological Society of America Bulletin 95(4): 406–421.

    Article  Google Scholar 

  • Keefer DK (2002) Investigating landslides caused by earthquakes—a historical review. Surveys in Geophysics 23(6): 473–510. DOI: 10.1023/A:1021274710840

    Article  Google Scholar 

  • Khazai B, Sitar N (2004) Evaluation of factors controlling earthquake-induced landslides caused by Chi-Chi earthquake and comparison with the Northridge and Loma Prieta events. Engineering Geology 71(1-2): 79–95. DOI: 10.1016/S0013-7952(03)00127-3

    Article  Google Scholar 

  • Lee CT, Huang CC, Lee JF, et. al. (2008) Statistical approach to earthquake-induced landslide susceptibility. Engineering Geology 100(1-2): 43–58. DOI: 10.1016/j.enggeo.2008.03.004

    Article  Google Scholar 

  • Martha TR, Kerle N, van Westen CJ, et. al. (2012) Objectoriented analysis of multi-temporal panchromatic images for creation of historical landslide inventories. ISPRS Journal of Photogrammetry and Remote Sensing 67: 105–119. DOI: 10.1016/j.isprsjprs.2011.11.004

    Article  Google Scholar 

  • Ministry of Home Affairs (MoHA), Government of Nepal (2015) Available online at: http://www.moha.gov.np/

  • Oh HJ, Lee S (2011) Landslide susceptibility mapping on Panaon Island, Philippines using a geographic information system. Environmental Earth Sciences 62(5): 935–951. DOI: 10.1007/s12665-010-0579-2

    Article  Google Scholar 

  • Owen LA, Kamp U, Khattak GA, et. al. (2008) Landslides triggered by the 8 October 2005 Kashmir earthquake. Geomorphology 94(1-2): 1–9. DOI: 10.1016/j.geomorph. 2007.04.007

    Article  Google Scholar 

  • Ozdemir A, Altural T (2013) A comparative study of frequency ratio, weights of evidence and logistic regression methods for landslide susceptibility mapping: Sultan Mountains, SW Turkey. Journal of Asian Earth Sciences 64: 180–197. DOI: 10.1016/j.jseaes.2012.12.014

    Article  Google Scholar 

  • Poudyal C, Chang C, Oh H-J, et al. (2010) Landslide susceptibility maps comparing frequency ratio and artificial neural networks: a case study from the Nepal Himalaya. Environmental Earth Sciences 61(5): 1049–1064. DOI: 10.1007/s12665-009-0426-5

    Article  Google Scholar 

  • Pradhan B, Lee S (2010) Delineation of landslide hazard areas on Penang Island, Malaysia, by using frequency ratio, logistic regression, and artificial neural network models. Environmental Earth Sciences 60(5): 1037–1054. DOI: 10.1007/s12665-009-0245-8

    Article  Google Scholar 

  • Qi S, Xu Q, Lan H, et. al. (2010) Spatial distribution analysis of landslides triggered by 2008.5.12 Wenchuan Earthquake, China. Engineering Geology 116(1-2): 95–108. DOI: 10.1016/j. enggeo.2010.07.011

    Article  Google Scholar 

  • Regmi A, Yoshida K, Pourghasemi H, et. al. (2014) Landslide susceptibility mapping along Bhalubang — Shiwapur area of mid-Western Nepal using frequency ratio and conditional probability models. Journal of Mountain Science 11(5): 1266–1285. DOI: 10.1007/s11629-013-2847-6

    Article  Google Scholar 

  • Regmi AD, Cui P, Dhital MR, Zou Q (2016) Rock fall hazard and risk assessment along Araniko Highway, Central Nepal Himalaya. Environmental Earth Sciences 75: 1–20. DOI: 10.1007/s12665-016-5905-x

    Article  Google Scholar 

  • Ren Z, Lin A (2010) Co-seismic landslides induced by the 2008 Wenchuan magnitude 8.0 Earthquake, as revealed by ALOS PRISM and AVNIR2 imagery data. International Journal of Remote Sensing 31: 3479–3493. DOI: 10.1080/014311610037 27770

    Article  Google Scholar 

  • Reneau SL, Dietrich WE (1987) The importance of hollows in debris flow studies; Examples from Marin County, California. In: Costa JE, Wieczorek GF (eds.), Debris Flows/Avalanches: Process, Recognition, and Mitigation. Geological Society of America, Boulder, Colorado. Reviews in Engineering Geology VII: 165–180. DOI: 10.1130/REG7-p165

    Chapter  Google Scholar 

  • Sato H, Hasegawa H, Fujiwara S, et. al. (2007) Interpretation of landslide distribution triggered by the 2005 Northern Pakistan earthquake using SPOT 5 imagery. Landslides 4(2): 113–122. DOI: 10.1007/s10346-006-0069-5

    Article  Google Scholar 

  • Sato H, Sekiguchi T, Kojiroi R, et. al. (2005) Overlaying landslides distribution on the earthquake source, geological and topographical data: the Mid Niigata prefecture earthquake in 2004, Japan. Landslides 2(2): 143–152. DOI: 10.1007/s10346-005-0053-5

    Article  Google Scholar 

  • Shahabi H, Khezri S, Ahmad BB, Hashim M (2014) Landslide susceptibility mapping at central Zab basin, Iran: A comparison between analytical hierarchy process, frequency ratio and logistic regression models. CATENA 115: 55–70. DOI: 10.1016/j.catena.2013.11.014

    Article  Google Scholar 

  • Shafique M, van der Meijde M, Khan MA (2016) A review of the 2005 Kashmir earthquake-induced landslides; from a remote sensing prospective. Journal of Asian Earth Sciences 118: 68–80. DOI: 10.1016/j.jseaes.2016.01.002

    Article  Google Scholar 

  • Stocklin J (1980) Geology of Nepal and its regional frame: Thirty-third William Smith Lecture. Journal of the Geological Society 137(1): 1–34. DOI:10.1144/gsjgs.137.1.0001

    Article  Google Scholar 

  • U.S. Geological Survey, Earthquake Hazards Program (2015) Available online at: http://earthquake.usgs.gov (Accessed on 20 May 2015)

  • van Westen CJ, Castellanos E, Kuriakose SL (2008) Spatial data for landslide susceptibility, hazard, and vulnerability assessment: An overview. Engineering Geology 102(3-4): 112–131. DOI: 10.1016/j.enggeo.2008.03.010

    Article  Google Scholar 

  • Wang HB, Sassa K, Xu WY (2007) Analysis of a spatial distribution of landslides triggered by the 2004 Chuetsu earthquakes of Niigata Prefecture, Japan. Natural Hazards 41(1): 43–60. DOI: 10.1007/s11069-006-9009-x

    Article  Google Scholar 

  • Wang LJ, Guo M, Sawada K, et. al. (2015) A comparative study of landslide susceptibility maps using logistic regression, frequency ratio, decision tree, weights of evidence and artificial neural network. Geosciences Journal 20(1): 117–136. DOI: 10.1007/s12303-015-0026-1

    Article  Google Scholar 

  • Wartman J, Dunham L, Tiwari B, et al. (2013) Landslides in eastern Honshu induced by the 2011 off the Pacific coast of Tohoku Earthquake. Bulletin of the Seismological Society of America 103(2B): 1503–1521.

    Article  Google Scholar 

  • Xu C, Xu X, Yao X, Dai F (2013) Three (nearly) complete inventories of landslides triggered by the May 12, 2008 Wenchuan Mw 7.9 earthquake of China and their spatial distribution statistical analysis. Landslides 11: 441–461. DOI: 10.1007/s10346-013-0404-6

    Article  Google Scholar 

  • Xu C, Xu X, Shyu JBH (2015) Database and spatial distribution of landslides triggered by the Lushan, China Mw 6.6 earthquake of 20 April 2013. Geomorphology 248: 77–92. DOI: 10.1016/j.geomorph.2015.07.002

    Article  Google Scholar 

  • Yagi H, Sato G, Higaki D, et. al. (2009) Distribution and characteristics of landslides induced by the Iwate–Miyagi Nairiku Earthquake in 2008 in Tohoku District, Northeast Japan. Landslides 6(4): 335–344. DOI:10.1007/s10346-009-0182-3

    Article  Google Scholar 

  • Yalcin A (2008) GIS-based landslide susceptibility mapping using analytical hierarchy process and bivariate statistics in Ardesen (Turkey): Comparisons of results and confirmations. CATENA 72(1): 1–12. DOI: 10.1016/j.catena. 2007.01.003

    Article  Google Scholar 

  • Yamagishi H, Iwahashi J (2007) Comparison between the two triggered landslides in Mid-Niigata, Japan by July 13 heavy rainfall and October 23 intensive earthquakes in 2004. Landslides 4(4): 389–397. DOI:10.1007/s10346-007-0093-0

    Article  Google Scholar 

  • Yin Y, Wang F, Sun P (2009) Landslide hazards triggered by the 2008 Wenchuan earthquake, Sichuan, China. Landslides 6(2): 139–152. DOI:10.1007/s10346-009-0148-5

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amar Deep Regmi.

Additional information

http://orcid.org/0000-0002-1423-9990

http://orcid.org/0000-0002-8093-7658

http://orcid.org/0000-0003-3908-1082

http://orcid.org/0000-0001-9972-4698

http://orcid.org/0000-0002-0177-0811

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Regmi, A.D., Dhital, M.R., Zhang, Jq. et al. Landslide susceptibility assessment of the region affected by the 25 April 2015 Gorkha earthquake of Nepal. J. Mt. Sci. 13, 1941–1957 (2016). https://doi.org/10.1007/s11629-015-3688-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11629-015-3688-2

Keywords

Navigation