Skip to main content
Log in

A protocol for efficient transformation and regeneration of Carica papaya L.

  • Biotechnology/Genetic Transformation/Somatic Cell Genetics
  • Published:
In Vitro Cellular & Developmental Biology - Plant Aims and scope Submit manuscript

Summary

A reproducible and effective biolistic method for transforming papaya (Carica papaya L.) was developed with a transformation-regeneration system that targeted a thin layer of embryogenic tissue. The key factors in this protocol included: 1) spreading of young somatic embryo tissue that arose directly from excised immature zygotic embryos, followed by another spreading of the actively growing embryogenic tissue 3 d before biolistic transformation; 2) removal of kanamycin selection from all subsequent steps after kanamycin-resistant clusters were first isolated from induction media containing kanamycin; 3) transfer of embryos with finger-like extensions to maturation medium; and 4) transferring explants from germination to the root development medium only after the explants had elongating root initials, had at least two green true leaves, and were about 0.5 to 1.0 cm tall. A total of 83 transgenic papaya lines expressing the nontranslatable coat protein gene of papaya ringspot virus (PRSV) were obtained from somatic embryo clusters that originated from 63 immature zygotic embryos. The transformation efficiency was very high: 100% of the bombarded plates produced transgenic plants. This also represents an average of 55 transgenic lines per gram fresh weight, or 1.3 transgenic lines per embryo cluster that was spread. We validated this procedure in our laboratory by visiting researchers who did four independent projects to transform seven papaya cultivars with coat protein gene constructs of PRSV strains from four different countries. The method is described in detail and should be useful for the routine transformation and regeneration of papaya.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arriola, M. D.; Calzada, J.; Menchu, J.; Rolz, C.; Garcia, R.; Cabrera, S. D. Papaya. In: Nagy, S.; Shaw, P., ed. Tropical and subtropical fruits. Westport: AVI; 1980:316–340.

    Google Scholar 

  • Ausubel, F. M.; Brent, R.; Kingston, R. E.; Moore, D. D.; Seidman, J. G.; Smith, J. A.; Struhl, K., ed. Current protocols in molecular biology. New York: John Wiley and Sons, Inc.; 1995:2.9.1–2.9.20.

    Google Scholar 

  • Cabrera-Ponce, J. L.; Vegas-Garcia, A.; Herrera-Estrella, L. Herbicide resistant transgenic papaya plants produced by an efficient particle bombardment transformation method. Plant Cell Rep. 15:1–7; 1995.

    Article  CAS  Google Scholar 

  • Cheng, Y.-H.; Yang, J.-S.; Yeh, S.-D. Efficient transformation of papaya by coat protein gene of papaya ringspot virus mediated by Agrobacterium following liquid-phase wounding of embryogenic tissues with carborundum. Plant Cell Rep. 16:127–132; 1996.

    CAS  Google Scholar 

  • Ferreira, S. A.; Pitz, K. Y.; Manshardt, R.; Zee, F.; Fitch, M.; Gonsalves, D. Transgenic papaya controls papaya ringspot virus in Hawaii. Phytopathology 87:S30 (Abstr.); 1997.

  • Fitch, M. M. M.; Manshardt, R. M.; Gonsalves, D.; Slightom, J. L.; Sanford, J. C. Stable transformation of papaya via microprojectile bombardment. Plant Cell Rep. 9:189–194; 1990.

    CAS  Google Scholar 

  • Fitch, M. M. M.; Manshardt, R. M.; Gonsalves, D.; Slightom, J. L.; Sanford, J. C. Virus resistant papaya plants derived from tissues bombarded with the coat protein gene of papaya ringspot virus. Bio/Technology 10:1466–1472; 1992.

    Article  CAS  Google Scholar 

  • Fitch, M. M. M. High frequency somatic embryogenesis and plant regeneration from papaya hypocotyl callus. Plant Cell Tissue Organ Cult. 32:205–212; 1993.

    Article  CAS  Google Scholar 

  • Fuente, J. M.; Ramirez-Rodriguez, V.; Cabrera-Ponce, J. L.; Herrera-Estrella, L. Aluminum tolerance in transgenic plants by alteration of citrate synthesis. Science 276:1566–1568; 1997.

    Article  PubMed  Google Scholar 

  • Galinsky, R. World market for papaya. Regional Agribusiness Project Market Information Bulletin. USAID-Asia RAP. Feb., No. 12. Online. Internet. 1996:5 p.

  • Gonsalves, D. Papaya ringspot virus. In: Ploetz, R. C.; Zentmyer, G. A.; Nishijima, W. T.; Rohrbach, K. G.; Ohr, H. D., ed. Compendium of tropical fruit diseases. St. Paul: APS Press; 1994:67–68.

    Google Scholar 

  • Gonsalves, D. Control of papaya ringspot virus in papaya: a case study. Annu. Rev. Phytopathol. 36:415–437; 1998.

    Article  PubMed  CAS  Google Scholar 

  • Gonsalves, C.; Cai, W.; Tennant, P.; Gonsalves, D. Efficient production of virus resistant transgenic papaya plants containing the untranslatable coat protein gene of papaya ringspot virus. Phytopathology 87:S34 (Abstr.); 1997.

  • Gonsalves, D.; Ishii, I. Purification and serology of papaya ringspot virus. Phytopathology 70:1028–1032; 1980.

    CAS  Google Scholar 

  • Gray, D. J.; Meredith, C. P. Grape. In: Hammerschlag, F. A.; Litz, R. E., ed. Biotechnology of perennial fruit crops. Wallingford, Oxford, UK: CAB International; 1992:229–262.

    Google Scholar 

  • Jefferson, R. A. Assaying chimeric genes in plants: the GUS gene fusion system. Plant Mol. Biol. Rep. 5:387–405; 1987.

    CAS  Google Scholar 

  • Ling, K.; Namba, S.; Gonsalves, C.; Slightom, J. L.; Gonsalves, D. Protection against detrimental effects of potyvirus infection in transgenic tobacco plants expressing the papaya ringspot virus coat protein gene. Bio/Technology 9:752–758; 1991.

    Article  PubMed  CAS  Google Scholar 

  • Lius, S.; Manshardt, R. M.; Fitch, M. M. M.; Slightom, J. L.; Sanford, J. C.; Gonsalves, D. Pathogen-derived resistance provides papaya with effective protection against papaya ringspot virus. Mol. Breed. 3:161–168; 1997.

    Article  Google Scholar 

  • Lomonossoff, G. P. Pathogen-derived resistance to plant viruses. Annu. Rev. Phytopathol. 33:323–343; 1995.

    Article  CAS  PubMed  Google Scholar 

  • Mahon, R. E.; Bateson, M. F.; Chamberlain, D. A.; Higgins, C. M.; Drew, R. A.; Dale, J. L. Transformation of an Australian variety of Carica papaya using microprojectile bombardment. Aust. J. Plant Physiol. 23:679–685; 1996.

    Article  Google Scholar 

  • Manshardt, R. M. ‘UH Rainbow’ papaya. Univ. Hawaii Coll. Trop. Agric. Human Res. Germplasm G-1. Honolulu: University of Hawaii; 1998:2 p.

  • Manshardt, R. M.; Wenslaff, T. F. Interspecific hybridization of papaya with other Carica species. J. Am. Soc. Hortic. Sci. 114:689–694; 1989.

    Google Scholar 

  • McCabe, D. E.; Swain, W. F.; Martinell, B. J.; Christou, P. Stable transformation of soybean (Glycine max) by particle acceleration. Bio/Technology 6:923–926; 1988.

    Article  Google Scholar 

  • Murashige, T.; Skoog, F. A revised medium for rapid growth and bioassay with tobacco tissue cultures. Physiol. Plant. 15:473–497; 1962.

    Article  CAS  Google Scholar 

  • Purcifull, D.; Edwardson, J.; Hiebert, E.; Gonsalves, D. Papaya ringspot virus. CMI/AAB Descriptions of plant viruses, No. 292. (No. 84 Revis., July 1984). 1984:8 p.

  • Quemada, H.; L’Hostis, B.; Gonsalves, D.; Reardon, I. M.; Heinrikson, R.; Hiebert, E. L.; Sieu, L. C.; Slightom, J. L. The nucleotide sequences of the 3′-terminal regions of papaya ringspot virus strains W and P. J. Gen. Virol. 71:203–210; 1990.

    PubMed  CAS  Google Scholar 

  • Razin, A. Assays for studying DNA methylation. In: Gelvin, S. B.; Schilperoort, R. A.; Verma, D. P. S., ed. Molecular biology manual. Dordrecht, The Netherlands: Kluwer Academic Publishers; 1988:B3:1–28.

    Google Scholar 

  • Sanford, J. C.; Johnston, S. A. The concept of parasite-derived resistance-deriving resistance genes from the parasite’s own genome. J. Theor. Biol. 113:395–405; 1985.

    Article  Google Scholar 

  • Sanford, J. C.; Smith, F. D.; Russell, J. A., ed. Optimizing the biolistic process for different biological applications. Methods Enzymol. 217:483–509; 1992.

  • Shukla, D. D.; Ward, C. W.; Brunt, A. A. The Potyviridae. Wallingford, UK: CAB International; 1994:516 p.

    Google Scholar 

  • Slightom, J. L. Custom polymerase-chain-reaction engineering of a plant expression vector. Gene 100:251–256; 1991.

    Article  PubMed  CAS  Google Scholar 

  • Tennant, P. F. Evaluation of the resistance of coat protein transgenic papaya against papaya ringspot virus isolates and development of transgenic papaya for Jamaica. Ph.D. thesis. Ithaca: Cornell University; 1996:317P.

    Google Scholar 

  • Tennant, P.; Fitch, M.; Manshardt, R.; Slightom, J.; Gonsalves, D. Resistance against papaya ringspot virus isolates in coat protein transgenic papaya is affected by transgene dosage and plant development. Phytopathology 87:S96 (Abstr.); 1997.

  • Tennant, P. F.; Gonsalves, C.; Ling, K.-S.; Fitch, M.; Manshardt, R.; Slightom, J. L.; Gonsalves, D. Differential protection against papaya ringspot virus isolates in coat protein gene transgenic papaya and classically cross-protected papaya. Phytopathology 84:1359–1366; 1994.

    Article  Google Scholar 

  • Yang, J-S.; Yu, T.-A.; Cheng, Y.-H.; Yeh, S.-D. Transgenic papaya plants from Agrobacterium-mediated transformation of petioles of in vitro propagated multishoots. Plant Cell Rep. 15:459–464; 1996.

    Article  CAS  Google Scholar 

  • Yeh, S.-D.; Cheng, Y.-H.; Bau, H.-J.; Yu, T.-A.; Yang, J.-S. Coat-protein transgenic papaya immune or highly resistant to different strains of papaya ringspot potyvirus. Phytopathology 87:S107 (Abstr.); 1997.

  • Yeh, S.-D.; Gonsalves, D. Evaluation of induced mutants of papaya ringspot virus for control by cross protection. Phytopathology 74:1086–1091; 1984.

    Article  Google Scholar 

  • Yeh, S.-D.; Gonsalves, D. Practices and perspective of control of papaya ringspot virus by cross protection. In: Harris, K. F., ed. Advances in disease vector research. New York: Springer-Verlag; 1994:237–257.

    Google Scholar 

  • Yeh, S.-D.; Jan, F.-J.; Chiang, C.-H.; Doong, P.-J.; Chen, M.-C.; Chung, P.-H.; Bau, H.-J. Complete nucleotide sequence and genetic organization of papaya ringspot virus RNA. J. Gen. Virol. 73:2531–2541; 1992.

    Article  PubMed  CAS  Google Scholar 

  • Yepes, L. M.; Aldwinckle, H. S. Factors that affect leaf regeneration efficiency in apple, and effect of antibiotics in morphogenesis. Plant Cell Tissue Organ Cult. 37:257–269; 1994.

    CAS  Google Scholar 

  • Yepes, L. M.; Fuchs, M.; Slightom, J. L.; Gonsalves, D. Sense and antisense coat protein gene constructs confer high levels of resistance to tomato ringspot nepovirus in transgenic Nicotiana species. Phytopathology 86:417–424; 1996.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cai, W., Gonsalves, C., Tennant, P. et al. A protocol for efficient transformation and regeneration of Carica papaya L.. In Vitro Cell.Dev.Biol.-Plant 35, 61–69 (1999). https://doi.org/10.1007/s11627-999-0011-3

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11627-999-0011-3

Key words

Navigation