Skip to main content

Advertisement

Log in

Technological advances in temperate hardwood tree improvement including breeding and molecular marker applications

  • Invited Reviews
  • Published:
In Vitro Cellular & Developmental Biology - Plant Aims and scope Submit manuscript

Abstract

Hardwood forests and plantations are an important economic resource for the forest products industry worldwide and to the international trade of lumber and logs. Hardwood trees are also planted for ecological reasons, for example, wildlife habitat, native woodland restoration, and riparian buffers. The demand for quality hardwood from tree plantations will continue to rise as the worldwide consumption of forest products increases. Tree improvement of temperate hardwoods has lagged behind that of coniferous species and hardwoods of the genera Populus and Eucalyptus. The development of marker systems has become an almost necessary complement to the classical breeding and improvement of hardwood tree populations for superior growth, form, and timber characteristics. Molecular markers are especially valuable for determining the reproductive biology and population structure of natural forests and plantations, and the identity of genes affecting quantitative traits. Clonal reproduction of commercially important hardwood tree species provides improved planting stock for use in progeny testing and production forestry. Development of in vitro and conventional vegetative propagation methods allows mass production of clones of mature, elite genotypes or genetically improved genotypes. Genetic modification of hardwood tree species could potentially produce trees with herbicide tolerance, disease and pest resistance, improved wood quality, and reproductive manipulations for commercial plantations. This review concentrates on recent advances in conventional breeding and selection, molecular marker application, in vitro culture, and genetic transformation, and discusses the future challenges and opportunities for valuable temperate (or “fine”) hardwood tree improvement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akerman, S.; Tammisola, J.; Lapinjoki, S.P.; Söderlund, H.; Kauppinen, V.; Viherä-Aarnio, A.; Regina, M.; Hagqvist, R. RAPD markers in parentage confirmation of a valuable breeding progeny of European white birch. Can. J. For. Res. 25:1070–1076; 1995.

    CAS  Google Scholar 

  • Anamthawat-Jonsson, K.; Thorsson, A.T. Natural hybridization in birch: triploid hybrids between Betula nana and B. pubescens. Plant Cell Tissue Organ Cult. 75:99–107; 2003.

    Google Scholar 

  • Andrade, G.M.; Merkle, S.A. Enhancement of American chestnut somatic seedling production. Plant Cell Rep. 24:326–334; 2005.

    PubMed  CAS  Google Scholar 

  • Aradhya, M.K.; Weeks, C.; Simon, C.J. Molecular characterization of variability and relationships among seven cultivated and selected wild species of Prunus L. using amplified fragment length polymorphisms. Sci. Hortic. 103:131–144; 2004.

    CAS  Google Scholar 

  • Arbeloa, A.; Daorden, M.E.; Garcia, E.; Wünsch, A.; Hormaza, J.I.; Marín, J.A. Significant effect of accidental pollinations on the progeny of low setting Prunus interspecific crosses. Euphytica 147:389–394; 2006.

    Google Scholar 

  • Aronen, T.S.; Häggman, J.H.; Häggman, H.M. Applicability of the co-inoculation technique using Agrobacterium tumefaciens shooty-tumour strain 82.139 in silver birch. Plant Cell Tissue Organ Cult. 70:147–154; 2002.

    CAS  Google Scholar 

  • Aziz, A.N.; Sauvé, R.J.; Zhou, S.; Meng, X. Microprojectile-mediated genetic transformation and regeneration of Chinese elm. Can. J. Plant Sci. 83:587–591; 2003.

    CAS  Google Scholar 

  • Bhagwat, B.; Lane, W.D. In vitro shoot regeneration from leaves of sweet cherry (Prunus avium) ‘Lapins’ and ‘Sweetheart’. Plant Cell Tissue Organ Cult. 78:173–181; 2004.

    CAS  Google Scholar 

  • Barghchi, M. Micropropagation of Alnus cordata (Loisel.) Loisel. Plant Cell Tissue Organ Cult. 15:233–244; 1988.

    CAS  Google Scholar 

  • Barghchi, M.; Chi, Y.H. In vitro regeneration and plant improvement in black locust (Robinia pseudoacacia L.). In: Davey, M.R.; Alderson, P.G.; Lowe, K.C.; Power, J.B. (eds.), Tree biotechnology: towards the millennium. Nottingham University Press, Nottingham, UK. 1998:187–196.

    Google Scholar 

  • Barker, M.J.; Pijut, P.M.; Ostry, M.E.; Houston, D.R. Micropropagation of juvenile and mature American beech. Plant Cell Tissue Organ Cult. 51:209–213; 1997.

    Google Scholar 

  • Barreneche, T.; Bodenes, C.; Lexer, C.; Trontin, J.-F.; Fluch, S.; Streiff, R.; Plomion, C.; Roussel, G.; Steinkellner, H.; Burg, K.; Favre, J.-M.; Glössl, J.; Kremer, A. A genetic linkage map of Quercus robur L. (pedunculate oak) based on RAPD, SCAR, microsatellite, minisatellite, isozyme, and 5S rDNA markers. Theor. Appl. Genet. 97:1090–1103; 1998.

    CAS  Google Scholar 

  • Bates, S.; Preece, J.E.; Navarrete, N.; Van Sambeek, J.W.; Gaffney, G.R. Thidiazuron stimulates shoot organogenesis and somatic embryogenesis in white ash (Fraxinus americana L.). Plant Cell Tissue Organ Cult. 31:21–29; 1992.

    CAS  Google Scholar 

  • Beedanagari, S.; Dove, S.K.; Wood, B.W.; Conner, P.J. A first linkage map of pecan cultivars based on RAPD and AFLP markers. Theor. Appl. Genet. 110:1127–1137; 2005.

    PubMed  CAS  Google Scholar 

  • Bellarosa, R.; Simeone, M.C.; Schirone, B. Germplasm conservation of Mediterranean oaks in Italy: distribution and genetic structure of cork oak (Quercus suber L.). In: Bozzano, M.; Turok, J. (eds.). Mediterranean oaks network report of the second meeting, Gozo, Malta. Rome, Italy: Int. Plant Cell Genetic Resources Institute (IPGRI); 2003:5–12.

  • Beritognolo, I.; Magel, E.; Abdel-Latif, A.; Charpentier, J.P.; Jay-Allemand, C.; Breton, C. Expression of genes encoding chalcone synthase, flavanon 3-hydroxylase and dihydroflavonol 4-reductase correlates with flavanol accumulation during heartwood formation in Juglans nigra. Tree Physiol. 22:291–300; 2002.

    PubMed  CAS  Google Scholar 

  • Bernardo, R.; Charcosset, A. Usefulness of gene information in marker-assisted recurrent selection: a simulation appraisal. Crop Sci. 46:614–621; 2006.

    Google Scholar 

  • Bernatzky, R.; Mulcahy, D.L. Marker-aided selection in a backcross breeding program for resistance to chestnut blight in the American chestnut. Can. J. For. Res. 22:1031–1035; 1992.

    Google Scholar 

  • Blenda, A.V.; Reighard, G.L.; Baird, W.V.; Abbott, A.G. Simple sequence repeat markers for detecting sources of tolerance to PTSL syndrome in Prunus persica rootstocks. Euphytica 147:287–295; 2006.

    CAS  Google Scholar 

  • Boccacci, P.; Akkak, A.; Marinoni, D.T.; Bounous, G.; Botta, R. Typing European chestnut (Castanea sativa Mill.) cultivars using oak simple sequence repeat markers. HortScience 39:1212–1216; 2004.

    CAS  Google Scholar 

  • Bosela, M.J.; Smagh, G.S.; Michler, C.H. Genetic transformation of black walnut (Juglans nigra). In: Michler, C.H.; Pijut, P.M.; van Sambeek, J.W.; Coggeshall, M.V.; Seifert, J.; Woeste, K.; Overton, R.; Ponder, F., Jr. (eds.), Black walnut in a new century, Proceedings of the 6th Walnut Council research symposium. USDA Forest Service, North Central Research Station, St. Paul, MN. Gen. Tech. Rep. NC-243; 2004:45–58.

  • Brasileiro, A.C.M.; Leple, J.C.; Muzzin, J.; Ounnoughi, D.; Michel, M.F.; Jouanin, L. An alternative approach for gene transfer in trees using wild-type Agrobacterium strains. Plant Mol. Biol. 17:441–452; 1991.

    PubMed  CAS  Google Scholar 

  • Breton, C.; Cornu, D.; Chriqui, D.; Sauvanet, A.; Capelli, P.; Germain, E.; Jay-Allemand, C. Somatic embryogenesis, micropropagation and plant regeneration of “Early Mature” walnut trees (Juglans regia). Tree Physiol. 24:425–435; 2004.

    PubMed  Google Scholar 

  • Brinker, M.; van Zyl, L.; Liu, W.; Craig, D.; Sederoff, R.R.; Clapham, D.H.; von Arnold, S. Microarray analysis of gene expression during adventitious root development in Pinus contorta. Plant Physiol. 135:1526–1539; 2004.

    PubMed  CAS  Google Scholar 

  • Burley, J. Tree improvement—opportunities and challenges. Q. J. For. 98:33–40; 2004.

    Google Scholar 

  • Burley, J.; Kanowski, P.J. Breeding strategies for temperate hardwoods. Forestry 78:199–208; 2005.

    Google Scholar 

  • Byram, T.D.; Bridgwater, F.E.; Gooding, G.D.; Gwaze, D.P.; Lowe, W.J.; Myszewski, J.H. 48th Progress report of the cooperative forest tree improvement program. Texas Forest Service Circular 401. Texas Forest Service, College Station; 2000.

  • Casasoli, M.; Derory, J.; Morera-Dutrey, C.; Brendel, O.; Porth, I.; Guehl, J.-M ; Villani, G.; Kremer, A. Comparison of quantitative trait loci for adaptive traits between oak and chestnut based on an expression sequence tag consensus map. Genetics 172:533–546; 2006.

    PubMed  CAS  Google Scholar 

  • Casasoli, M.; Mattioni, C.; Cherubini, M.; Villani, F. A genetic linkage map of European chestnut (Castanea sativa Mill.) based on RAPD, ISSR, and isozyme markers. Theor. Appl. Genet. 102:1190–1199; 2001.

    CAS  Google Scholar 

  • Casasoli, M.; Pot, D.; Plomion, C.; Monteverdi, M.C.; Barreneche, T.; Lauteri, M.; Villani, F. Identification of QTLs affecting adaptive traits in Castanea sativa Mill. Plant Cell Environ. 27:1088–1101; 2004.

    CAS  Google Scholar 

  • Cervantez-Martinez, C.; Brown, J.S. A haplotype-based method for QTL mapping of F1 populations in outbred plant species. Crop Sci. 44:1572–1583; 2004.

    Article  Google Scholar 

  • Chalupa, V. Micropropagation of mature trees of birch (Betula pendula Roth.) and aspen (Populus tremula L.). Lesnictvi 35:983–993; 1989.

    Google Scholar 

  • Chalupa, V. In vitro propagation of mature trees of pedunculate oak (Quercus robur L.). J. For. Sci. 46:537–542; 2000.

    CAS  Google Scholar 

  • Chalupa, V. In vitro propagation of Tilia platyphyllos by axillary shoot proliferation and somatic embryogenesis. J. For. Sci. 49:537–543; 2003.

    Google Scholar 

  • Chanon, A.M.; Kamalay, J.C.; Jourdan, P. Micropropagation of juvenile and mature American elms. In: Pallardy, S.G.; Cecich, R.A.; Garrett, H.G.; Johnson, P.S. (eds.), Proc. 11th Central Hardwood Forest Conference, North Central Forest Experiment Station., USDA Forest Service Gen Tech. Rep. NC-188. 1997:242–250.

  • Chmielarz, P. Sensitivity of Tilia cordata seeds to dehydration and temperature of liquid nitrogen. Dendrobiology 47S:71–77; 2002.

    Google Scholar 

  • Christou, P.; Capell, T.; Kohli, A.; Gatehouse, J.A.; Gatehouse, A.M.R. Recent developments and future prospects in insect pest control in transgenic crops. Trends Plant Sci. 11:302–308; 2006.

    PubMed  CAS  Google Scholar 

  • Clausen, K.E. The yellow × paper birch hybrid—a potential substitute for yellow birch on problem sites. In: Proceedings, 13th Lake States Forest Tree Improvement Conference. USDA For. Serv. Gen. Tech. Rep. NC-50. North Central Forest Experiment Station, St. Paul, MN; 1979:166–171.

  • Conner, P.J.; Wood; B.W. Identification of pecan cultivars and their genetic relatedness as determined by randomly amplified polymorphic DNA analysis. J. Am. Soc. Hortic. Sci. 126:474–480; 2001.

    CAS  Google Scholar 

  • Connors, B.J.; Maynard, C.A.; Powell, W.A. Expressed sequence tags from stem tissue of the American chestnut, Castanea dentata. Biotechnol. Lett. 23:1407–1411; 2001.

    CAS  Google Scholar 

  • Cros, E.T. du. Management and conservation of forest genetic resources. Role of IUFRO and France: need for long term monitoring of genetic diversity in conservation networks. In: W.D. Maurer (ed.). Mitteilungen aus der Forschungsanstalt fur Waldokologie und Forstwirtschaft Rheinland-Pfalz. Trippstadt, Germany: Forstliche Verssuchsanstalt Rheinland-Pfalz; 2004:1–10.

    Google Scholar 

  • Cvikrova, M.; Mala, J.; Hrubcova, M.; Eder, J.; Zon, J.; Machackova, I. Effect of inhibition of biosynthesis of phenylpropanoids on sessile oak somatic embryogenesis. Plant Physiol. Biochem. 41:251–259; 2003.

    CAS  Google Scholar 

  • Dandekar, A.M.; Fisk, H.J.; McGranahan, G.H.; Uratsu, S.L.; Bains, H.; Leslie, C.A.; Tamura, M.; Escobar, M.; Labavitch, J.; Grieve, C.; Gradziel, T.; Vail, P.V.; Tebbets, S.J.; Sassa, H.; Tao, R.; Viss, W.; Driver, J.; James, D.; Passey, A.; Teo, G. Different genes for different folks in tree crops: what works and what does not. HortScience 37:281–286; 2002.

    CAS  Google Scholar 

  • Dandekar, A.; Leslie, C.; McGranahan, G.M. Juglans regia Walnut. In: Litz, R.E. Biotechnology of fruit and nut crops. Biotechnology in agriculture series, No.29. CABI Publishing; 2005:307–323.

  • Dangl, G.S.; Woeste, K.; Aradhya, M.K.; Koehmstedt, A.; Simon, C.; Potter, D.; Leslie, C.; McGranahan, G.H. Characterization of 14 microsatellite markers for genetic analysis and cultivar identification of walnut. J. Am. Soc. Hortic. Sci. 130:348–354; 2005.

    CAS  Google Scholar 

  • Davis, J.M.; Keathley, D.E. Toward efficient clonal propagation of mature black locust trees using tissue culture. Nitrogen Fixing Tree Res. Rep. 5:57–58; 1987a.

    Google Scholar 

  • Davis, J.M.; Keathley, D.E. Differential responses to in vitro bud cultures in mature Robinia pseudoacacia L. (black locust). Plant Cell Rep. 6:431–434; 1987b.

    CAS  Google Scholar 

  • Deguilloux, M.F.; Pemonge, M.H.; Bertel, L.; Kremer, A.; Petit, R.J. Checking the geographical origin of oak wood: molecular and statistical tools. Mol. Ecol. 12:1629–1636; 2003.

    PubMed  CAS  Google Scholar 

  • Deguilloux, M.F.; Pemonge, M.H.; Petit, R.J. DNA-based control of oak wood geographic origins in the context of the cooperage industry. Ann. For. Sci. 61:97–104; 2004.

    CAS  Google Scholar 

  • Dolcet-Sanjuan, R.; Claveria, E.; Gruselle, R.; Meier-Dinkel, A.; Jay-Allemand, C.; Gaspar, T. Practical factors controlling in vitro adventitious root formation from walnut shoot microcuttings. J. Am. Soc. Hortic. Sci. 129:198–203; 2004.

    Google Scholar 

  • Douglas, G. Vegetative propagation of selected reproductive stocks of ash and sycamore. In: Thompson, D.; Harrington, F.; Douglas, G.; Hennerty, M.J.; Nakhshab, N.; Long, R. (eds.), Vegetative propagation techniques for oak, ash, sycamore, and spruce. Dublin, Irish Republic: National Council for Forest Research and Development. 2001:16–28.

    Google Scholar 

  • Douhovnikoff, V.; Dodd, R.S. Intra-clonal variation and a similarity threshold for identification of clones: application to Salix exigua using AFLP molecular markers. Theor. Appl. Genet. 106:1307–1315; 2003.

    PubMed  CAS  Google Scholar 

  • Dow, B.D.; Ashley, M.V. Microsatellite analysis of seed dispersal and parentage of saplings in bur oak, Quercus macrocarpa. Mol. Ecol. 5:615–627; 1996.

    Google Scholar 

  • Druart, Ph.; Delporte, F.; Brazda, M.; Ugarte-Ballon, C.; Machado, A.C.; Machado, M.L.C.; Jacquemin, J.; Watillon, B. Genetic transformation of cherry trees. Acta Hortic. 468:71–76; 1998.

    Google Scholar 

  • Dumanoglu, H. Desiccation using saturated salt solutions and improvement germination rate of walnut (Juglans regia L.) somatic embryos. Turk. J. Agric. For. 24:491–498; 2000.

    CAS  Google Scholar 

  • Dumolin-Lapegue, S.; Pemonge, M.H.; Gielly, L.; Taberlet, P.; Petit, R.J. Amplification of oak DNA from ancient and modern wood. Mol. Ecol. 8:2137–2140; 1999.

    PubMed  CAS  Google Scholar 

  • Dunwell, J.M.; Moya-León, M.A.; Herrera, R. Transcriptome analysis and crop improvement (a review). Biol. Res. 34:153–164; 2001.

    Article  PubMed  CAS  Google Scholar 

  • Durkovic, J. Rapid micropropagation of mature wild cherry. Biol. Plant. 50:733–736; 2006.

    CAS  Google Scholar 

  • Ehrenreich, I.M.; Purugganan, M.D. The molecular genetic basis of plant adaptation. Am. J. Bot. 93:953–962; 2006.

    CAS  Google Scholar 

  • El Euch, C.; Jay-Allemand, C.; Pastuglia, M.; Doumas, P.; Charpentier, J.P.; Capelli, P.; Jouanin, L. Expression of antisense chalcone synthase RNA in transgenic hybrid walnut microcuttings: effect on flavonoid content and rooting ability. Plant Mol. Biol. 38:467–479; 1998.

    PubMed  Google Scholar 

  • Eriksson, G. Conservation of noble hardwoods in Europe. Can. J. For. Res. 31:577–587; 2001.

    Google Scholar 

  • Escobar, M.A.; Leslie, C.A.; McGranahan, G.H.; Dandekar, A.M. Silencing crown gall disease in walnut (Juglans regia L.). Plant Sci. 163:591–597; 2002.

    CAS  Google Scholar 

  • Escudero, A.; Iriondo, J.M.; Torres, M.E. Spatial analysis of genetic diversity as a tool for plant conservation. Biol. Conserv. 113:351–365; 2003.

    Google Scholar 

  • Espinosa, A.C.; Pijut, P.M.; Michler, C.H. Adventitious shoot regeneration and rooting of Prunus serotina in vitro cultures. HortScience 41:193–201; 2006.

    CAS  Google Scholar 

  • Falasca, G.; Reverberi, M.; Lauri, P.; Caboni, E.; Stradis, A.D.; Altamura, M.M. How Agrobacterium rhizogenes triggers de novo root formation in a recalcitrant woody plant: an integrated histological, ultrastructural and molecular analysis. New Phytol. 145:77–93; 2000.

    CAS  Google Scholar 

  • FAO. Promotion of valuable hardwood plantations in the tropics. A global overview. Report based on the work of F.K. Odoom. Forest Plantation Thematic Papers, Working Paper 4. Forest Resources Development Service, Forest Resources Division. FAO, Rome (unpublished; see http://www.fao.org/forestry); 2001.

  • Fenning, T.M.; Gershenzon, J. Where will the wood come from? Plantation forests and the role of biotechnology. Trends Biotechnol. 20:291–296; 2002.

    PubMed  CAS  Google Scholar 

  • Fernandez-Lorenzo, J.L.; Ballester, A.; Rigueiro, A. Phenolic content of microcuttings of adult chestnut along rooting induction. Plant Cell Tissue Organ Cult. 83:153–159; 2005.

    CAS  Google Scholar 

  • Fernando, D.D.; Richards, J.L.; Kikkert, J.R. In vitro germination and transient GFP expression of American chestnut (Castanea dentata) pollen. Plant Cell Rep. 25:450–456; 2006.

    PubMed  CAS  Google Scholar 

  • Ferris, C.; Davy, A.J.; Hewitt, G.M. A strategy for identifying introduced provenances and translocations. Forestry 70:211–222; 1997.

    Google Scholar 

  • Ferry, N.; Edwards, M.G.; Gatehouse, J.; Capell, T.; Christou, P.; Gatehouse, A.M.R. Transgenic plants for insect pest control: a forward looking scientific perspective. Transgenic Res. 15:13–19; 2006.

    PubMed  CAS  Google Scholar 

  • Fineschi, S.; Salvini, D.; Taurchini, D.; Carnevale, S.; Vendramin, G.G. Chloroplast DNA variation of Tilia cordata (Tiliaceae). Can. J. For. Res. 33:2503–2508; 2003.

    Google Scholar 

  • Fjellstrom, R.G.; Parfitt, D.E. Walnut (Juglans spp.) genetic diversity determined by restriction fragment length polymorphisms. Genome 37:690–700; 1994.

    CAS  PubMed  Google Scholar 

  • Fralish, J.S. The central hardwood forest conference 1976–1999: Title, subject, author, and species indexes for the proceedings. USDA For. Serv. Gen. Tech. Rep. NC-225. North Central Research Station, St. Paul, MN; 2002.

  • Fridman, E.; Pleban, T.; Zamir, D. A recombination hotspot delimits a wild-species quantitative trait locus for tomato sugar content to 484 bp within an invertase gene. Proc. Natl. Acad. Sci. U S A 97:4718–4723; 2000.

    PubMed  CAS  Google Scholar 

  • Gailing, O.; Kremer, A.; Steiner, W.; Hattemer, H.H.; Finkeldey, R. Results on quantitative trait loci for flushing date in oaks can be transferred to different segregating progenies. Plant Biol. 7:516–525; 2005.

    PubMed  CAS  Google Scholar 

  • Gailing, O.; von Wuelisch, G. Nuclear markers (AFLPs) and chloroplast microsatellites differ between Fagus sylvatica and F. orientalis. Silvae Genet. 53:105–110; 2004.

    Google Scholar 

  • Garcia, C.; Arroy, J.M.; Godoy, J.A.; Jordano, P. Mating patterns, pollen dispersal, and ecological maternal neighborhood in a Prunus mahaleb L. population. Mol. Ecol. 14:1821–1830; 2005.

    PubMed  CAS  Google Scholar 

  • Garcia-Martin, G.; Manzanera, J.A.; Gonzalez-Benito, M.E. Effect of exogenous ABA on embryo maturation and quantification of endogenous levels of ABA and IAA in Quercus suber somatic embryos. Plant Cell Tissue Organ Cult. 80:171–177; 2005.

    CAS  Google Scholar 

  • Gartland, K.M.A.; McHugh, A.T.; Crow, R.M.; Amit-Garg, A.; Gartland J.S. 2004 SIVB congress symposium proceeding: biotechnological progress in dealing with Dutch elm disease. In Vitro Cell. Dev. Biol.—Plant 41:364–367; 2005.

    Google Scholar 

  • Geburek, T. Isozymes and DNA markers in gene conservation of forest trees. Biodivers. Conserv. 6:1639–1654; 1997.

    Google Scholar 

  • Gibson, G.; Weir, B. The quantitative genetics of transcription. Trends Genet. 21:616–623; 2005.

    PubMed  CAS  Google Scholar 

  • Gil, B.; Pastoriza, E.; Ballester, A.; Sanchez, C. Isolation and characterization of a cDNA from Quercus robur differentially expressed in juvenile-like and mature shoots. Tree Physiol. 23:633–640; 2003.

    PubMed  CAS  Google Scholar 

  • Gillet, E.M. Which DNA marker for which purpose? Final compendium of the research project “Development, optimization and validation of molecular tools for assessment of biodiversity in forest trees” in European Union DGXII biotechnology FW IV Research Programme “Molecular tools for biodiversity.”; 1999. http://webdoc.sub.gwdg.de/ebook/y/1999/whichmarker/index.htm.

  • Giovannelli, A.; Giannini, R. Reinvigoration of mature chestnut (Castanea sativa) by repeated grafting and micropropagation. Tree Physiol. 20:1243–1248; 2000.

    PubMed  Google Scholar 

  • Gonzalez-Martinez, S.; Krutovsky, K.V.; Neale, D.B. Forest-tree population genomics and adaptive evolution. New Phytol. 170:227–238; 2006.

    PubMed  Google Scholar 

  • Goodall-Copestake, W.P.; Hollingsworth, M.L.; Hollingsworth, P.M.; Jenkins, G.I.; Coffin, E. Molecular markers and ex situ conservation of the European elms (Ulmus spp.). Biol. Conserv. 122:537–546; 2005.

    Google Scholar 

  • Gonzalez-Martinez, S.C.; Krutovsky, K.V.; Neale, D.B. Forest-tree population genomics and adaptive evolution. New Phytol. 170:227–238; 2006.

    PubMed  Google Scholar 

  • Goto, S.; Tsuda, Y.; Nagafuji, K.; Uchiyama, K.; Takahashi, Y.; Tange, T.; Ide, Y. Genetic make-up and diversity of regenerated Betula maximowicziana Regel. sapling populations in scarified patches as revealed by microsatellite analysis. For. Ecol. Manag. 203:273–282; 2004.

    Google Scholar 

  • Grant, N.J.; Fenning, T.M.; Hammatt, N. Regeneration and transformation of wild cherry (Prunus avium L.) and bird cherry (Prunus padus L.). In: Davey, M.R.; Alderson, P.G.; Lowe, K.C.; Power, J.B. (eds.), Tree biotechnology towards the millennium. Nottingham, UK: Nottingham University Press; 1998:249–257.

    Google Scholar 

  • Grattapaglia, D.; Ribeiro, V.J.; Rezende, G.D.S.P. Retrospective selection of elite parent trees using paternity testing with microsatellite markers: an alternative short term breeding tactic for Eucalyptus. Theor. Appl. Genet. 109:192–199; 2004.

    PubMed  CAS  Google Scholar 

  • Grauke, L.J.; Mendoza-Herrera, M.A.; Loopstra, C.; Thompson, T.E. Microsatellite markers for verifying parentage of pecans. HortScience 40:515; 2006.

    Google Scholar 

  • Gregorius, H.R.; von Werder, H. On a genetic assessment of the adaptedness of forest reproductive material. Theor. Appl. Genet. 104:429–435; 2002.

    PubMed  CAS  Google Scholar 

  • Hamann, A.; El-Kassaby, Y.A.; Koshy, M.P.; Namkoong, G. Multivariate analysis of allozymic and quantitative trait variation in Alnus rubra: geographic patterns and evolutionary implications. Can. J. For. Res. 28:1557–1565; 1998.

    Google Scholar 

  • Hammatt, N. Shoot initiation in the leaflet axils of compound leaves from micropropagated shoots of juvenile and mature common ash (Fraxinus excelsior L.). J. Exp. Bot. 45:871–875; 1994.

    Google Scholar 

  • Hammatt, N. Delayed flowering and reduced branching in micropropagated mature wild cherry (Prunus avium L.) compared with rooted cuttings and seedlings. Plant Cell Rep. 18:478–484; 1999.

    CAS  Google Scholar 

  • Hammatt, N.; Blake, P.S.; Hand, P. Characterization and use of apparent rejuvenation achieved during micropropagation of mature Prunus avium L. In: Davey, M.R.; Alderson, P.G.; Lowe, K.C.; Power, J.B. (eds.), Tree biotechnology: towards the millennium. Nottingham, UK: Nottingham University Press. 1998:45–63.

    Google Scholar 

  • Hammatt, N.; Grant, N.J. Apparent rejuvenation of mature wild cherry (Prunus avium L.) during micropropagation. J. Plant Physiol. 141:341–346; 1993.

    CAS  Google Scholar 

  • Hammatt, N.; Grant, N.J. Micropropagation of mature British wild cherry. Plant Cell Tissue Organ Cult. 47:103–110; 1997.

    Google Scholar 

  • Han, K.H.; Shin, D.; Keathley, D.E. Tissue culture responses of explants taken from branch sources with different degrees of juvenility in mature black locust (Robinia pseudoacacia) trees. Tree Physiol. 17:671–675; 1997.

    PubMed  Google Scholar 

  • Hanley, S.; Barker, J.; Van Ooijen, J.; Aldam, C.; Harris, S.; Åhman, I.; Larson, S.; Karp, A. A genetic linkage map of willow (Salix viminalis) based on AFLP and microsatellite markers. Theor. Appl. Genet. 105:1087–1096; 2002.

    PubMed  CAS  Google Scholar 

  • Hardig, T.M.; Brunsfeld, S.J.; Fritz, R.S.; Orians, C.M. Morphological and molecular evidence for hybridization and introgression in a willow (Salix) hybrid zone. Mol. Ecol. 9:9–24; 2000.

    PubMed  CAS  Google Scholar 

  • Harrington, F.; Douglas, G.C.; McNamara, J. Production of root suckers by mature clones of Prunus avium: efficiency of root suckers and crown buds for culture initiation. Adv. Hortic. Sci. 8:11–14; 1994.

    Google Scholar 

  • Harvengt, L.; Meier-Dinkel, A.; Dumas, E.; Collin, E. Establishment of a cryopreserved gene bank of European elms. Can. J. For. Res. 34:43–55; 2004.

    Google Scholar 

  • Hasebe, M.; Ando, T.; Iwatsuki, K. Intrageneric relationships of maple trees based on the chloroplast DNA restriction fragment length polymorphisms. J. Plant Res. 111:441–451; 1998.

    CAS  Google Scholar 

  • Heinze, B.; Lexer, C. Oak seedlots and forest seed trade regulations: an investigation using molecular markers. Glasnik za Sumske Pokuse 37:347–360; 2000.

    Google Scholar 

  • Helenius, E.; Boije, M.; Niklander-Teeri, V.; Palva, E.T.; Teeri, T.H. Gene delivery into intact plants using the Helios™ gene gun. Plant Mol. Biol. Rep. 18:287a–287l; 2000.

    Google Scholar 

  • Hennerty, M.J.; Nakhshab, N.; Long, R. Photoautotrophic micropropagation of ash and sycamore. In: Thompson, D.; Harrington, F.; Douglas, G.; Hennerty, M.J.; Nakhshab, N.; Long, R. (eds.), Vegetative propagation techniques for oak, ash, sycamore, and spruce. Dublin, Irish Republic: National Council for Forest Research and Development. 2001:29–54.

    Google Scholar 

  • Heuertz, M.; Hausman, J.F.; Tsvetkov, I.; Frascaria-Lacoste, N.; Vekmans, X. Assessment of genetic structure within and among Bulgarian populations of the common ash (Fraxinus excelsior L.). Mol. Ecol. 10:1615–1623; 2001.

    PubMed  CAS  Google Scholar 

  • Heuertz, M.; Vekemans, X.; Hausman, J.F.; Palada, M.; Hardy; O.J. Estimating seed vs. pollen dispersal from spatial genetic structure in the common ash. Mol. Ecol. 12:2483–2495; 2003.

    PubMed  CAS  Google Scholar 

  • Hormaza, J.I. Early selection in cherry combining RAPDs with embryo culture. Sci. Hortic. 79:121–126; 1999.

    Google Scholar 

  • Hosius, B.; Leinemann, L.; Konnert, M.; Bergmann, F. Genetic aspects of forestry in the Central Europe. Eur. J. For. Res. 125:407–417; 2006.

    Google Scholar 

  • Howad, W.; Yamamoto, T.; Dirlewanger, E.; Testolin, R.; Cosson, P.; Cipriani, G.; Monforte, A.J.; Georgi, L.; Abbott, A.G.; Ars, P. Mapping with a few plants: using selective mapping for microsatellite saturation of the Prunus reference map. Genetics 171:1305–1309; 2005.

    PubMed  CAS  Google Scholar 

  • Huh, M.K. Genetic diversity and population structure of Korean alder (Alnus japonica; Betulaceae). Can. J. For. Res. 29:1311–1316; 1999.

    Google Scholar 

  • Hvoslef-Eide, A.K.; Olsen, O.A.S.; Lyngved, R.; Munster, C.; Heyerdahl, P.H. Bioreactor design for propagation of somatic embryos. Plant Cell Tissue Organ Cult. 81:265–276; 2005.

    Google Scholar 

  • Jackson, R.E.; Bradley, J.R.; Van Duyn, J.W. Performance of feral and Cry1Ac-selected Helicoverpa zea (Lepidoptera: Noctuidae) strains on transgenic cottons expressing one or two Bacillus thuringiensis ssp. kurstaki proteins under greenhouse conditions. J. Entomol. Sci. 39:46–55; 2004.

    CAS  Google Scholar 

  • Jones, O.P.; Welander, M.; Waller, B.J.; Ridout, M.S. Micropropagation of adult birch trees: production and field performance. Tree Physiol. 16:521–525; 1996.

    PubMed  Google Scholar 

  • Jorge, I.; Navarro, R.M.; Lenz, C.; Ariza, D.; Porras, C.; Jorrin, J. The Holm oak leaf proteome: analytical and biological variability in the protein expression level assessed by 2-DE and protein identification tandem mass spectrometry de novo sequencing and sequence similarity searching. Proteomics 5:222–234; 2005.

    PubMed  CAS  Google Scholar 

  • Joung, Y.H.; Roh, M.S.; Baril, C. Characterization of Acer griseum and its putative interspecific hybrids. Acta Hortic. 546:217–220; 2001.

    CAS  Google Scholar 

  • Juncker, B.; Favre, J.M. Long-term effects of culture establishment from shoot-tip explants in micropropagating oak (Quercus robur L.). Ann. Sci. For. 51:581–588; 1994.

    Google Scholar 

  • Kamlesh, K.; Sehgal, R.N.; Deepak, S. Effect of explant type on the micropropagation of Robinia pseudoacacia. Indian J. For. 18:47–52; 1995.

    Google Scholar 

  • Karagöz, A. 2003. Plant genetic resources conservation in Turkey. Acta Hortic. 598:17–25; 2003.

    Google Scholar 

  • Karhu, A.; Hurme, P.; Karjalainen, M.; Karvonen, P.; Karkkainen, K.; Neale, D.; Savolainen, O. Do molecular markers reflect patterns of differentiation in adaptive traits of conifers? Theor. Appl. Genet. 93:215–221; 1996.

    CAS  Google Scholar 

  • Karkonen, A. Anatomical study of zygotic and somatic embryos of Tilia cordata. Plant Cell Tissue Organ Cult. 61:205–214; 2000.

    CAS  Google Scholar 

  • Karp, A.; Kresovich, S.; Bhat, K.V.; Ayad, W.G.; Hodgkin, T. Molecular tools in plant genetic resources conservation: a guide to the technologies. Int. Plant Genet. Resources Institute Tech. Bull. 2. IPGRI, Rome; 1997.

  • Kaur, R.; Sharma, N.; Kumar, K.; Sharma, D.R.; Sharma, S.D. In vitro germination of walnut (Juglans regia L.) embryos. Sci. Hortic. 109:385–388; 2006.

    CAS  Google Scholar 

  • Kelleher, C.T.; Hodkinson, T.R.; Kelly, D.L.; Douglas, G.C. Characterization of chloroplast DNA haplotypes to reveal the provenance and genetic structure of oaks in Ireland. For. Ecol. Manag. 189:123–131; 2004.

    Google Scholar 

  • Kirst, M.; Myburg, A.A.; De Leon, J.P.G.; Kirst, M.E.; Scott, J.; Sederoff, R. Coordinated genetic regulation of growth and lignin revealed by quantitative trait locus analysis of cDNA microarray data in an interspecific backcross of Eucalyptus. Plant Physiol. 135:2368–2378; 2004.

    PubMed  CAS  Google Scholar 

  • Koski, V.; Rousi, M. A review of the promises and constraints of breeding silver birch (Betula pendula Roth) in Finland. Forestry 78:187–198; 2005.

    Google Scholar 

  • Kotilainen, T.; Setala, H.; Alatalo, I.; Vuorisalo, T.; Saloniemi, I. Impacts of chitinase-transformed silver birch on leaf decomposition and soil organisms. Eur. J. Soil Biol. 40:155–161; 2004.

    Google Scholar 

  • Krstinic, A.; Kajba, D. Improvement of Chinese willow (Salix matsudana Koidz.) and white willow (Salix alba L.) by hybridization and selection. In: Jurc, M. (ed.) Znanje za gozd Zbornik ob 50 obletnici obstoja in delovanja Gozdarskega institute Slovenije, Vol. 1. Ljubljana: Slovenian Forestry Institute; 1997.

    Google Scholar 

  • Kubisiak, T.L.; Hebard, F.V.; Nelson, C.D.; Zhang, J.; Bernatzky, R.; Huang, H.; Anagnostakis, S.L.; Doudrick, R.L. Molecular mapping of resistance to blight in an interspecific cross in the genus Castanea. Phytopathology 87:751–759; 1997.

    CAS  PubMed  Google Scholar 

  • Label, P.; Levert, I.; Breton, C.; Beritognolo, I.; Charpentier, J.P.; Jay-Allemand, C. Gene expression in cambial zone of hybrid walnut stem related to radial growth. Acta Hort. 544:323–326; 2001.

    CAS  Google Scholar 

  • Lall, S.; Mandegaran, Z.; Roberts, A.V. Shoot multiplication in cultures of mature Alnus glutinosa. Plant Cell Tisue Organ Cult. 83:347–350; 2005.

    CAS  Google Scholar 

  • Lannenpaa, M.; Hassinen, M.; Ranki, A.; Holtta-Vuori, M.; Lemmetyinen, J.; Keinonen, K.; Sopanen, T. Prevention of flower development in birch and other plants using a BpFULL1::BARNASE construct. Plant Cell Rep. 24:69–78; 2005.

    PubMed  CAS  Google Scholar 

  • Lantz, C.W. Genetic improvement of forest trees. In: Bonner, F.T. (tech. coord.) and Nisley, R.G. (man. ed.), Woody Plant Seed Manual. USDA Forest Service, Washington, DC, (see http://www.nsl.fs.fed.us/wpsm/Chapter2.pdf); accessed 2007.

  • Leege, A.D.; Tripepi, R.R. Rapid adventitious shoot regeneration from leaf explants of European birch. Plant Cell Tissue Organ Cult. 32:123–129; 1993.

    CAS  Google Scholar 

  • Leitch, M.A.; Bossinger, G. In vitro systems for the study of wood formation. In: Kumar, S. and Fladung, M. (eds.), Molecular genetics and breeding of forest trees. New York, NY: Food Products Press, The Haworth Press, Inc.. 2004:193–211.

    Google Scholar 

  • Lemmetyinen, J.; Keinonen, K.; Sopanen, T. Prevention of the flowering of a tree, silver birch. Mol. Breed. 13:243–249; 2004.

    CAS  Google Scholar 

  • Leslie, C.A.; McGranahan, G.H.; Dandekar, A.M.; Uratsu, S.L.; Vail, P.V.; Tebbets, J.S. Development and field-testing of walnuts expressing the CRY1A(C) gene for lepidopteran insect resistance. Acta Hortic. 544:195–199; 2001.

    CAS  Google Scholar 

  • Li, Z.; Wang, Z. RAPD markers used for the hybrid identification and parents choice in Liriodendron. Sci. Silv. Sinic. 38:169–174; 2002.

    CAS  Google Scholar 

  • Linhart, Y.B. Variation in woody plants: Molecular markers, evolutionary processes and conservation genetics. In: Jain, S.M.; Minocha, S.C. (eds.). Molecular Biology of Woody Plants, Vol. 1. The Netherlands: Kluwer Academic; 2000:341–373.

    Google Scholar 

  • Lippert, D.; Zhuang, J.; Ralph, S.; Ellis, D.E.; Gilbert, M.; Olafson, R.; Ritland, K.; Ellis, B.; Douglas, C.J.; Bohlmann, J.; Proteome analysis of early somatic embryogenesis in Picea glauca. Proteomics 5:461–473; 2005.

    PubMed  CAS  Google Scholar 

  • Lopes, T.; Pinto, G.; Loureiro, J.; Costa, A.; Santos, C. Determination of genetic stability in long-term somatic embryogenic cultures and derived plantlets of cork oak using microsatellite markers. Tree Physiol. 26:1145–1152; 2006.

    PubMed  CAS  Google Scholar 

  • Loureiro, J.; Pinto, G.; Lopes, T.; Dolezel, J.; Santos, C. Assessment of ploidy stability of the somatic embryogenesis process in Quercus suber L. using flow cytometry. Planta 221:815–822.

    PubMed  CAS  Google Scholar 

  • Lyyra, S.; Lima, A.; Merkle, S.A. In vitro regeneration of Salix nigra from adventitious shoots. Tree Physiol. 26:969–975; 2006.

    PubMed  CAS  Google Scholar 

  • Machon, N.; Lefranc, M.; Bilger, I.; Mazer, S.J.; Sarr, A. Allozyme variation in Ulmus species from France: analysis of differentiation. Heredity 78:12–20; 1997.

    PubMed  CAS  Google Scholar 

  • Mackay, J.; Seguin, A.; Lalonde, M. Genetic transformation of 9 in vitro clones of Alnus and Betula by Agrobacterium tumefaciens. Plant Cell Rep. 7:229–232; 1988.

    CAS  Google Scholar 

  • Mala, J.; Machova, P.; Cvrckova, H. Micropropagation of linden. Zpravy-Lesnickeho-Vyzkumu 46:147–149; 2001.

    Google Scholar 

  • Manel, S.; Schwartz, M.K.; Luikart, G.; Talberlet. P. Landscape genetics: combining landscape ecology and population genetics. Trends Ecol. Evol. 18:189–197; 2003.

    Google Scholar 

  • Manos, P.; Stone, D.E. Evolution, phylogeny, and systematics of the Juglandaceae. Ann. Mo. Bot. Gard. 88:231–269; 2001.

    Google Scholar 

  • Martins, M.; Sarmento, D.; Oliveira, M.M. Genetic stability of micropropagated almond plantlets, as assessed by RAPD and ISSR markers. Plant Cell Rep. 23:492–496; 2004.

    PubMed  CAS  Google Scholar 

  • Marusina, K. Novel methodologies for rapid, low-cost sequencing. Gen. Eng. News 26(12):6–8; 2006.

    Google Scholar 

  • Matt, A.; Jehle, J.A. In vitro plant regeneration from leaves and internode sections of sweet cherry cultivars (Prunus avium L.). Plant Cell Rep. 24:468–476; 2005.

    PubMed  CAS  Google Scholar 

  • Maynard, C.A. Six-year field test results of micropropagated black cherry (Prunus serotina). In Vitro Cell. Dev. Biol. Plant 30P:64–69; 1994.

    Google Scholar 

  • McGranahan, G.H.; Leslie, C.A.; Dandekar, A.M.; Uratsu, S.L.; Yates, I.E. Transformation of pecan and regeneration of transgenic plants. Plant Cell Rep. 12:634–638; 1993.

    CAS  Google Scholar 

  • McKay, J.K.; Latta, R.G. Adaptive population divergence: markers, QTL and traits. Trends Ecol. Evol. 17:285–291; 2002.

    Google Scholar 

  • Meena, B.; Ahuja, M.R. In vitro regeneration of mature beech (Fagus sylvatica) as influenced by genotype and season. Ann. For. 4:203–210; 1996.

    Google Scholar 

  • Mehlenbacher, S.A. Progress and prospects in nut breeding. Acta Hortic. 622:57–79; 2003.

    Google Scholar 

  • Meier, K; Reuther, G. Factors controlling micropropagation of mature Fagus sylvatica. Plant Cell Tissue Organ Cult. 39:231–238; 1994.

    Google Scholar 

  • Merkle, S.A.; Nairn, C.J. Hardwood tree biotechnology. In Vitro Cell. Dev. Biol. Plant 41:602–619; 2005.

    CAS  Google Scholar 

  • Merzeau, D.; di-Guisto, F.; Comps, B.; Thiebaut, B.; Letouzey, J.; Cuguen, J. Genetic control of isozyme systems and heterogeneity of pollen contribution in beech (Fagus sylvatica L). Silvae Genet. 38:195–201; 1989.

    Google Scholar 

  • Michler, C.H.; Meilan, R.; Woeste, K.E.; Pijut, P.M.; Jacobs, D.; Aldrich, J.; Glaubitz. Hardwood genetics and tree improvement—a Midwest USA perspective. In: Colombo. S.J. (comp.), Proc.: The thin green line: A symposium on the state-of-the-art in reforestation. Ont. Min. Nat. Resour., Ont. For. Res. Inst., Sault Ste. Marie, ON. For. Res. Inf. Pap. No. 160. 2005:69–74.

  • Michler, C.H.; Pijut, P.M.; Van Sambeek, J.; Coggeshall, M.; Seifert, J.; Woeste, K.; Overton, R. Black walnut in a new century, in proceedings of the 6th Walnut Council research symposium. USDA For. Serv. Gen. Tech. Rep. NC-243. North Central Research Station, St. Paul, MN; 2004.

  • Miflin, B. Crop improvement in the 21st century. J. Exp. Bot. 51:1–8; 2000.

    PubMed  CAS  Google Scholar 

  • Mohler, V.; Schwarz, G. Genotyping tools in plant breeding: from restriction fragment length polymorphisms to single nucleotide polymorphisms. In: Lörz, H.; Wenzel, G. (eds.), Biotechnology in Agriculture and Forestry: Molecular Marker Systems, Vol. 55. Berlin Heidelberg New York: Springer-Verlag; 2004:23–38.

    Google Scholar 

  • Morgante, M.; Salamini, F. From plant genomics to breeding practice. Curr. Opin. Biotech. 14:214–219; 2003.

    PubMed  CAS  Google Scholar 

  • Muir, G.; Fleming, C.C.; Schlotterer, C. Species status of hybridizing oaks. Nature 405:1016; 2000.

    PubMed  CAS  Google Scholar 

  • Nadel, B.L.; Altman, A.; Pleban, S.; Huttermann, A. In vitro development of mature Fagus sylvatica L. buds. I. The effect of medium and plant growth regulators on bud growth and protein profiles. J. Plant Physiol. 138:596–601; 1991a.

    CAS  Google Scholar 

  • Nadel, B.L.; Altman, A.; Pleban, S.; Kocks, R.; Huttermann, A. In vitro development of mature Fagus sylvatica L. buds. II. Seasonal changes in the response to plant growth regulators. J. Plant Physiol. 138:136–141; 1991b.

    CAS  Google Scholar 

  • Nakatsubo, T.; Li, L.G.; Chiang, V.L.; Hattori, T.; Shimada, M.; Umezawa, T. Basic studies towards elucidation of heartwood formation mechanisms. Wood Res. 90:5–6; 2003.

    CAS  Google Scholar 

  • Naujoks, G. Somatic embryogenesis in beech (Fagus sylvatica). Biol. Brat. 58:83–87; 2003.

    Google Scholar 

  • Neale, D.; Savolainen, O. Association genetics of complex traits in conifers. Trends Plant Sci. 9:325–330; 2004.

    PubMed  CAS  Google Scholar 

  • Nehra, N.S.; Becwar, M.R.; Rottmann, W.H.; Pearson, L.; Chowdhury, K.; Chang, S.; Wilde, H.D.; Kodrzycki, R.J.; Zhang, C.; Gause, K.C.; Parks, D.W.; Hinchee, M.A. Forest biotechnology: innovative methods, emerging opportunities. In Vitro Cell. Dev. Biol. Plant 41:701–717; 2005.

    CAS  Google Scholar 

  • Newhouse, A.; Schrodt, F.; Maynard, C.; Powell, W. Agrobacterium transformation of American elm (Ulmus americana) leaf pieces. In: Wang, K. (ed.), Agrobacterium Protocols, Vol. II. Methods in molecular biology book series. Totowa, NJ: Humana Press; 2006.

    Google Scholar 

  • Newton, A.C.; Allnutt, T.R.; Gillies, A.C.M.; Lowe, A.J.; Ennos, R.A. Molecular phylogeography, intraspecific variation and the conservation of tree species. Trends Ecol. Evol. 4:140–145; 1999.

    Google Scholar 

  • Ohyama, M.; Baba, K.; Itoh, T.; Shiraishi, S. Polymorphism analysis of Fagaceae and DNA-based identification of Fagus species grown in Japan based on the rbcl gene. J. Wood Sci. 45:183–187; 1999.

    CAS  Google Scholar 

  • Orel, G.; Marchant, A.D.; McLeod, J.A.; Richards; G.D. Characterization of 11 Juglandaceae genotypes based on morphology, cpDNA, and RAPD. HortScience 38:1178–1183; 2003.

    CAS  Google Scholar 

  • Palme, A.E.; Su, Q.; Palsson, S.; Lascoux, M. Extensive sharing of chloroplast haplotypes among European birches indicates hybridization among Betula pendula, B. pubescens and B. nana. Mol. Ecol. 13:167–178; 2004.

    PubMed  CAS  Google Scholar 

  • Panda, S.; Martin, J.P.; Aguinagalde, I.; Mohanty, A. Chloroplast DNA variation in cultivated and wild Prunus avium L.: a comparative study. Plant Breed. 122:92–94; 2003.

    CAS  Google Scholar 

  • Panis, B.; Lambardi, M. Status of cryopreservation technologies in plants (crops and forest trees). Electronic forum on biotechnology in food and agriculture, International workshop, Turin, Italy. The role of biotechnology for the characterization and conservation of crop, forestry, animal and fishery genetic resources. On-line at: http://www.fao.org/biotech/docs/panis.pdf.

  • Paran, I.; Zamir, D. Quantitative traits in plants: beyond the QTL. Trends Genet. 19:303–306; 2003.

    Google Scholar 

  • Pasonen, H.L.; Seppanen, S.K.; Degefu, Y.; Rytkonen, A.; von Weissenberg, K.; Pappinen, A. Field performance of chitinase transgenic silver birches (Betula pendula): resistance to fungal diseases. Theor. Appl. Genet. 109:562–570; 2004.

    PubMed  CAS  Google Scholar 

  • Pekkinen, M.; Varvio, S.; Kulju, K.M.; Karkkainen, H.; Smolander, S.; Vihera-Aarnio, A.; Koski, V.; Sillanpää, M.J. Linkage map of birch, Betula pendula Roth, based on microsatellites and amplified fragment length polymorphisms. Genome 48:619–627; 2005.

    PubMed  CAS  Google Scholar 

  • Perez-Parron, M.A.; Gonzalez-Benito, M.E.; Perez, C. Micropropagation of Fraxinus angustifolia from mature and juvenile plant material. Plant Cell Tissue Organ Cult. 37:297–302; 1994.

    CAS  Google Scholar 

  • Pevalek, K.B.; Michler, C.H.; Jelaska, S. Microclonal multiplication of wild cherry (Prunus avium L.) from shoot tips and root sucker buds. Acta Bot. Croat 53:31–38; 1994.

    Google Scholar 

  • Piispanen, R.; Aronen, T.; Chen, X.-W.; Saranpaa, P.; Haggman, H. Silver birch (Betula pendula) plants with aux and rol genes show consistent changes in morphology, xylem structure and chemistry. Tree Physiol. 23:721–733; 2003.

    PubMed  CAS  Google Scholar 

  • Pinon, J.; Lohou, C.; Cadic, A. Hybrid elms (Ulmus spp.): adaptability in Paris and behavior towards Dutch elm disease (Ophiostoma novo-ulmi). Acta Hori. 496:107–114; 1999.

    Google Scholar 

  • Plomion, C.; Richardson, T.; MacKay, J. Advances in forest tree genomics. New Phytol. 166:713–717; 2005.

    PubMed  Google Scholar 

  • Polin, L.D.; Liang, H.; Rothrock, R.E.; Nishii, M.; Diehl, D.L.; Newhouse, A.E.; Nairn, C.J.; Powell, W.A.; Maynard, C.A. Agrobacterium-mediated transformation of American chestnut (Castanea dentata (Marsh.) Borkh.) somatic embryos. Plant Cell Tissue Organ Cult. 84:69–78; 2006.

    CAS  Google Scholar 

  • Pooler, M.R.; Townsend, A.M. DNA fingerprinting of clones and hybrids of American elm and other elm species with AFLP markers. J. Environ. Hortic. 23:113–117; 2005.

    CAS  Google Scholar 

  • Potter, D.; Gao, F.Y.; Baggett, S.; McKenna, J.R.; McGranahan, G.H. Defining the sources of paradox: DNA sequence markers for North American walnut (Juglans L.) species and hybrids. Scientia Hortic. 94:157–170; 2002.

    CAS  Google Scholar 

  • Powell, W.A.; Catranis, C.M.; Maynard, C.A. Synthetic antimicrobial peptide design. Mol. Plant-Microb Interact 8:792–794; 1995.

    CAS  Google Scholar 

  • Powell, W.A.; Catranis, C.M.; Maynard, C.A. Design of self-processing antimicrobial peptides for plant protection. Lett. Appl. Microbiol. 31:163–168; 2000.

    PubMed  CAS  Google Scholar 

  • Powell, W.A.; Maynard, C.A.; Boyle, B.; Seguin, A. Fungal and bacterial resistance in transgenic trees. In: Fladung, M.; Ewald, D. (eds.), Tree transgenesis: recent developments. Berlin Heidelberg New York, Springer-Verlag; 2006:235–252.

    Google Scholar 

  • Prat, D. Interspecific hybridization and vegetative propagation: alder. In: Association pour la Recherche sur le Bois en Lorraine (ed.), Actes du 2e colloque Sciences et industries du bois, Nancy, 22–24 Avril, 1987, Vol. 1. Association pour la Recherche sur le Bois en Lorraine; 1988:161–168.

  • Pratesi, D.; Paris, R.; Negri, P.; Scotti, A. Agrobacterium-mediated genetic transformation competence of different Prunus explants, as revealed by GUS expression. Acta Hortic. 663:495–498; 2004.

    CAS  Google Scholar 

  • Prewein, C.; Endemann, M.; Reinohl, V.; Salaj, J.; Sunderlikova, V.; Wilhelm, E. Physiological and morphological characteristics during development of pedunculate oak (Quercus robur L.) zygotic embryos. Trees 20:53–60; 2006.

    Google Scholar 

  • Prewein, C.; Wilhelm, E. Plant regeneration from encapsulated somatic embryos of pedunculate oak (Quercus robur L.). In Vitro Cell. Dev. Biol. Plant 39:613–617; 2003.

  • Pritchard, J.K.; Przeworski, M. Linkage disequilibrium in humans: models and data. Am. J. Hum. Genet. 69:1–14; 2001.

    PubMed  CAS  Google Scholar 

  • Puigderrajols, P.; Celestino, C.; Suilis, M.; Toribio, M.; Molinas, M. Histology of organogenic and embryogenic responses in cotyledons of somatic embryos of Quercus suber L. Intl. J. Plant Sci. 161:353–362; 2000.

    Google Scholar 

  • Puigderrajols, P.; Jofre, A.; Mir, G.; Pla, M.; Verdaguer, D.; Huguet, G.; Molinas, M. Developmentally and stress-induced small heat shock proteins in cork oak somatic embryos. J. Exp. Bot. 53:1445–1452; 2002.

    PubMed  CAS  Google Scholar 

  • Quere, A. le; Wright, D.P.; Soderstrom, B.; Tunlid, A.; Johansson, T. Global patterns of gene regulation associated with the development of ectomycorrhiza between birch (Betula pendula Roth.) and Paxillus involutus (Batsch) Fr. Mol. Plant Microbe In. 18:659–673; 2005.

    Google Scholar 

  • Rafalski, A. Applications of single nucleotide polymorphisms in crop genetics. Curr. Opin. Plant Biol. 5:94–100; 2002.

    PubMed  CAS  Google Scholar 

  • Raquin, C.; Brachet, S.; Jeandroz, S.; Vedel, F.; Frascaria-Lacoste, N. Combined analyses of microsatellite and RAPD markers demonstrate possible hybridization between Fraxinus excelsior L. and Fraxinus angustifolia Vahl. For. Genet. 9:111–114; 2002.

    CAS  Google Scholar 

  • Rogers, S.M.; Bernatchez, L. Integrating QTL mapping and genome scans towards the characterization of candidate loci under parallel selection in the lake whitefish (Coregonus clupeaformis). Mol. Ecol. 14:351–361; 2005.

    PubMed  CAS  Google Scholar 

  • Rohr, R.; Hanus, D. Vegetative propagation of wavy grain sycamore maple. Can. J. For. Res. 17:418–420; 1987.

    Article  Google Scholar 

  • Romano, A.; Noronha, C.; Martins-Loucao, M.A. Influence of growth regulators on shoot proliferation in Quercus suber L. Ann. Bot. 70:531–536; 1992.

    CAS  Google Scholar 

  • Ross-Ibarra, J. Quantitative trait loci and the study of plant domestication. Genetica 123:197–204; 2005.

    PubMed  Google Scholar 

  • Rowden, A.; Robertson, A.; Allnutt, T.; Heredia, S.; Williams-Linera, G.; Newton, A.C. Conservation genetics of Mexican beech, Fagus grandifolia var. Mexicana. Conserv. Genet. 5:475–484; 2004.

    CAS  Google Scholar 

  • Rugh, C.L.; Senecoff, J.F.; Meagher, R.B.; Merkle, S.A. Development of transgenic yellow poplar for mercury phytoremediation. Nat. Biotechnol. 16:925–928; 1998.

    PubMed  CAS  Google Scholar 

  • Rusanen, M.; Vakkari, P.; Blom, A. Genetic structure of Acer platanoides and Betula pendula in northern Europe. Can. J. For. Res. 33:1110–1115; 2003.

    Google Scholar 

  • Ruter, B., Hamrick, J.L; Wood, B.W. Genetic diversity within provenance and cultivar germplasm collections versus natural populations of pecan (Carya illinoinensis). J. Hered. 90:521–528; 1999.

    Google Scholar 

  • Ryynanen, L.; Aronen, T. Genome fidelity during short- and long-term tissue culture and differentially cryostored meristems of silver birch (Betula pendula). Plant Cell Tissue Organ Cult. 83:21–32; 2005.

    Google Scholar 

  • Sánchez, N.; Manzanera, J.A.; Pintos, B.; Bueno, M.A. Agrobacterium-mediated transformation of cork oak (Quercus suber L.) somatic embryos. New For 29:169–176; 2005.

    Google Scholar 

  • Sanchez, M.C.; Martinez, M.T.; Valladares, S.; Ferro, E.; Vieitez, A.M. Maturation and germination of oak somatic embryos originated from leaf and stem explants: RAPD markers for genetic analysis of regenerants. J. Plant Physiol. 160:699–707; 2003.

    PubMed  CAS  Google Scholar 

  • Sanchez, M.C.; San-Jose, M.C.; Ballester, A.; Vieitez, A.M. Requirements for in vitro rooting of Quercus robur and Q. rubra shoots derived from mature trees. Tree Physiol. 16:673–680; 1996.

    PubMed  Google Scholar 

  • Sanchez, M.C.; San-Jose, M.C.; Ferro, E.; Ballester, A.; Vieitez, A.M. Improving micropropagation conditions for adult-phase shoots of chestnut. J. Hortic. Sci. 72: 433–443; 1997.

    Google Scholar 

  • Sanchez, M.C.; Vieitez, A.M. In vitro morphogenetic competence of basal sprouts and crown branches of mature chestnut. Tree Physiol. 8:59–70; 1991.

    PubMed  Google Scholar 

  • Sanchez-Zamora, M.A.; Cos-Terrer, J.; Frutos-Tomas, D.; Garcia-Lopez, R. Embryo germination and proliferation in vitro of Juglans regia L. Sci. Hortic. 108:317–321; 2006.

    CAS  Google Scholar 

  • San-Jose, M.C.; Vieitez, A.M.; Ballester, A. Clonal propagation of juvenile and adult trees of sessile oak by tissue culture techniques. Silvae Genetica 39:50–55; 1990.

    Google Scholar 

  • Santini, A. The hybrid plane (Platanus x Acerifolia L.) Platanaceae family. Sherwood Foreste (ed ) Alberi Oggi. 7:37–41; 2001.

  • Sarkilahti, E. Micropropagation of a mature colchicine-polyploid and irradiation-mutant of Betula pendula Roth. Tree Physiol. 4:173–179; 1988.

    PubMed  Google Scholar 

  • Scalfi, M.; Troggio, M.; Piovani, P.; Leonardi, S.; Magnaschi, G.; Vendramin, G.G.; Menozzi, P. A RAPD, AFLP and SSR linkage map, and QTL analysis in European beech (Fagus sylvatica L.). Theor. Appl. Genet. 108:433–441; 2004.

    PubMed  CAS  Google Scholar 

  • Schaeffer, W.I. Terminology associated with cell, tissue and organ culture, molecular biology and molecular genetics. In Vitro Cell. Dev. Biol. 26:97–101; 1990.

    PubMed  CAS  Google Scholar 

  • Schafleitner, R.; Wilhelm, E. Isolation of wound-responsive genes from chestnut (Castanea sativa) microstems by mRNA display and their differential expression upon wounding and infection with the chestnut blight fungus (Cryphonectria parasitica). Physiol. Mol. Plant Path. 61:339–348; 2002.

    CAS  Google Scholar 

  • Schoenweiss, K.; Meier-Dinkel, A.; Grotha, R. Comparison of cryopreservation techniques for long-term storage of ash (Fraxinus excelsior L.). Cryo-Lett 201–212; 2005.

  • Scotti-Saintagne, C.; Bodenes, C.; Barreneche, T.; Bertocchi, E.; Plomion, C.; Kremer, A. Detection of quantitative trait loci controlling bud burst and height growth in Quercus robur L. Theor. Appl. Genet. 109:1656–1659; 2004a.

    Google Scholar 

  • Scotti-Saintagne, C.; Mariette, S.; Porth, I.; Goicoechea, P.G.; Barreneche, T.; Bodenes, C.; Burg, K.; Kremer, A. Genome scanning for interspecific differentiation between two closely related oak species [Quercus robur L. and Q. petraea (Matt.) Liebl.]. Genetics 168:1615–1626; 2004b.

    PubMed  CAS  Google Scholar 

  • Seguin, A.; Lalonde, M. Gene transfer by electroporation in Betulaceae protoplasts: Alnus incana. Plant Cell Rep. 7:367–370; 1988.

    CAS  Google Scholar 

  • Shepherd, M.; Jones, M.E.; Molecular Markers in Tree Improvement: Characterization and use in Eucalyptus. In: Lörz, H.; Wenzel, G. eds. Biotechnology in Agriculture and Forestry: Molecular Marker Systems, Vol. 55. Berlin Heidelberg New York, Springer-Verlag; 2004:399–412.

    Google Scholar 

  • Sillanpää, M.; Kontunen-Soppela, S.; Luomala, E. M.; Sutinen, S.; Kangasjarvi, J.; Haggman, H.; Vapaavuori. E. Expression of senescence-associated genes in the leaves of silver birch (Betula pendula). Tree Physiol. 25:1161–1172; 2005.

    PubMed  Google Scholar 

  • Skepner, A.P.; Krane, D.E. RAPD reveals genetic similarity of Acer saccharum and Acer nigrum. Heredity 80:422–428; 1998.

    CAS  Google Scholar 

  • Slate, J. Quantitative trait locus mapping in natural populations: progress, caveats and future directions. Mol. Ecol. 14:363–379; 2005.

    PubMed  CAS  Google Scholar 

  • Sork, V.L.; Davis, F.W.; Smouse, P.E.; Apsit, V.J.; Dyer, R.J.; Fernandez, M.J.-F.; Kuhn, B. Pollen movement in declining populations of California Valley oak, Quercus labata: where have all the fathers gone? Mol. Ecol. 11:1657–1668; 2002.

    PubMed  CAS  Google Scholar 

  • Sparks, D.; Yates, I.E. Pecan pollen stored over a decade retains viability. HortScience 37:176–177; 2002.

    Google Scholar 

  • Spitze, K. Population structure in Daphnia obtusa: quantitative genetic and allozyme variation. Genetics 135:267–374; 1993.

    Google Scholar 

  • Stefan, S. 1989. Micropropagating black walnut. Am. Nurserym 169:89–92; 1989.

    Google Scholar 

  • Steger, M.M.; Preece, J.E. The influence of source tree on somatic embryogenesis from eastern black walnut (Juglans nigra) immature cotyledons. Acta Hortic. 625:249–252; 2003.

    Google Scholar 

  • Storz, J.F. Contrasting patterns of divergence in quantitative traits and neutral DNA markers: analysis of clinal variation. Mol. Ecol. 11: 2537–2551; 2002.

    PubMed  CAS  Google Scholar 

  • Streiff, R.; Ducousso, A.; Lexer, C.; Steinkellner, H.; Gloessl, J.; Kremer, A. Pollen dispersal inferred from paternity analysis in a mixed stand of Quercus robur L. and Q. petraea (Matt.) Liebl. Mol. Ecol. 8:831–841; 1999.

    Google Scholar 

  • Sunderlikova, V.; Wilhelm, E. High accumulation of legumin and lea-like mRNAs during maturation is associated with increased conversion frequency of somatic embryos from pedunculate oak (Quercus robur L.). Protoplasma 220:97–103; 2002.

    PubMed  CAS  Google Scholar 

  • Sutter, E.G.; Barker, P.B. In vitro propagation of mature Liquidambar styraciflua. Plant Cell Tissue Organ Cult. 5:13–21; 1985.

    CAS  Google Scholar 

  • Tabashnik, B.E.; Carriere, Y; Dennehy, T.J.; Morin, S.; Sisterson, M.S.; Roush, R.T.; Shelton, A. M.; Zhao, J-Z. Insect resistance to transgenic Bt crops: lessons from the laboratory and field. J. Econ. Entomol. 96:1031–1038; 2003.

    Article  PubMed  CAS  Google Scholar 

  • Tabrett, A.M.; Hammatt, N. Regeneration of shoots from embryo hypocotyls of common ash (Fraxinus excelsior). Plant Cell Rep. 11:514–518; 1992.

    Google Scholar 

  • Tang, H.; Ren, Z.; Krczal, G. Improvement of English walnut somatic embryo germination and conversion by desiccation treatments and plantlet development by lower medium salts. In Vitro Cell. Dev. Biol. Plant 36:47–50; 2000.

    CAS  Google Scholar 

  • Thomson, M.; Edwards, J.D.; Septiningsih, E.M.; Harringon, S.E.; McCouch, S.R. Substitution mapping of dth1.1, a flowering-time quantitative trait locus (QTL) associated with transgressive variation in rice, reveals multiple sub-QTL. Genetics 172:2501–2514; 2006.

    PubMed  CAS  Google Scholar 

  • Tobolski, J.J.; Kemery, R.D. Identification of red maple cultivars by isozyme analysis. HortScience 27:169–171; 1992.

    CAS  Google Scholar 

  • Tonon, G.; Capuana, M.; Di Marco, A. Plant regeneration of Fraxinus angustifolia by in vitro shoot organogenesis. Sci. Hortic. 87:291–301; 2001.

    CAS  Google Scholar 

  • Tonon, G.; Capuana, M.; Rossi, C. Somatic embryogenesis and embryo encapsulation in Fraxinus angustifolia Vhal. J. Hortic. Sci. Biotech. 76:753–757; 2001a.

    Google Scholar 

  • Tonon, G.; Berardi, G.; Rossi, C.; Bagnaresi, U. Synchronized somatic embryo development in embryogenic suspensions of Fraxinus angustifolia. In Vitro Cell. Dev. Biol. Plant 37:462–465; 2001b.

    CAS  Google Scholar 

  • Tovar-Sanchez, E.; Oyama, K. Natural hybridization and hybrid zones between Quercus crassif volia and Quercus crassipes (Fagaceae) in Mexico: morphological and molecular evidence. Am. J. Bot. 91:1352–1363; 2004.

    CAS  Google Scholar 

  • Tricoli, D.M.; Maynard, C.A.; Drew, A.P. Tissue culture of propagation of mature trees of Prunus serotina Ehrh. I. Establishment, multiplication, and rooting in vitro. For. Sci. 31:201–208; 1985.

    Google Scholar 

  • Tsarouhas, V.; Gullberg, U.; Lagercrantz, U. An AFLP and RFLP linkage map and quantitative trait locus (QTL) analysis of growth traits in Salix. Theor. Appl. Genet. 105: 277–288; 2002.

    PubMed  CAS  Google Scholar 

  • Tsumura, Y.; Takahashi, M.; Takahashi, T.; Tani, N.; Asuka, Y.; Tomaru, N. Forest management and conservation using microsatellite markers: the empirical example of Fagus. In: Lörz, H.; Wenzel, G. (eds.) Biotechnology in Agriculture and Forestry: Molecular Marker Systems, Vol. 55. Berlin Heidelberg New York; Springer; 2004:387–397.

  • Vahdati, K.; Leslie, C.; Zamani, Z.; McGranahan, G. Rooting and acclimatization of in vitro-grown shoots from mature trees of three Persian walnut cultivars. HortScience 39:324–327; 2004.

    Google Scholar 

  • Vahdati, K.; McKenna, J.R.; Dandekar, A.M.; Leslie, C.A.; Uratsu, S.L.; Hackett, W.P.; Negri, P.; McGranahan, G.H. Rooting and other characteristics of a transgenic walnut hybrid (Juglans hindsii × J. regia) rootstock expressing rolABC. J. Am. Soc. Hortic. Sci. 127:724–728; 2002.

    Google Scholar 

  • Valjakka, M.; Aronen, T.; Kangasjärvi, J.; Vapaavuori, E.; Häggman, H. Genetic transformation of silver birch (Betula pendula) by particle bombardment. Tree Physiol. 20:607–613; 2000.

    PubMed  Google Scholar 

  • Valjakka, M.; Luomala, E.M.; Kangasjarvi, J.; Vapaavuori, E. Expression of photosynthesis- and senescence-related genes during leaf development and senescence in silver birch (Betula pendula) seedlings. Physiol. Plant. 106:302–310; 1999.

    CAS  Google Scholar 

  • Valladares, S.; Sanchez, C.; Martinez, M.T.; Ballester, A.; Vieitez, A.M. Plant regeneration through somatic embryogenesis from tissues of mature oak trees: true-to-type conformity of plantlets by RAPD analysis. Plant Cell Rep. 25:879–886; 2006.

    PubMed  CAS  Google Scholar 

  • van Sambeek, J.W.; Lambus, L.J.; Khan, S.B.; Preece, J.E. In vitro establishment of tissues from adult black walnut. In: van Sambeek, J.W. (ed.), Knowledge for the future of black walnut. North Central For. Exp. Station, USDA For. Serv., Gen. Tech. Rep. NC-191. 1997:78–92.

  • Vendrame, W.A.; Holliday, C.P.; Montello, P.M.; Smith, D.R.; Merkle, S.A. Cryopreservation of yellow-poplar and sweetgum embryogenic cultures. New For. 21:283–292; 2001.

    Google Scholar 

  • Vendrame, W.A; Kochert, G.D.; Sparks, D.; Wetzstein, H.Y. Field performance and molecular evaluations of pecan trees regenerated from somatic embryogenic cultures. J. Am. Soc. Hortic. Sci. 125:542–546; 2000.

    CAS  Google Scholar 

  • Vendrame, W.; Wetzstein, H. Carya illinoinensis Pecan. In: Litz, R.E. (ed.) Biotechnology of fruit and nut crops. Biotechnology in agriculture series, No.29. CABI Publishing; 2005:298–306.

  • Verleysen, H.; Fernandes, P.; Sanchez Pinto, I.; Van Bockstaele, E.; Debergh, P. Cryopreservation of Robinia pseudoacacia. Plant Cell Tissue Organ Cult. 81:193–202; 2005.

    Google Scholar 

  • Vidal, N.; Arellano, G.; San-Jose, M.C.; Vieitez, A.M.; Ballester, A. Developmental stages during the rooting of in-vitro cultured Quercus robur shoots from material of juvenile and mature origin. Tree Physiol. 23:1247–1254; 2003.

    PubMed  CAS  Google Scholar 

  • Vidal, N.; Sanchez, C.; Jorquera, L.; Ballester, A.; Vieitez, A.M. Cryopreservation of chestnut by vitrification of in vitro-grown shoot tips. In Vitro Cell. Dev. Biol. Plant 41:63–68; 2005.

    CAS  Google Scholar 

  • Vieitez, F.J.; Merkle, S.A. Castanea spp. Chestnut. In: Litz, R.E. Biotechnology of fruit and nut crops. Biotechnology in agriculture series, No.29. CABI Publishing; 2005:265–296.

  • Vieitez, A.M.; San-Jose, M.C.; Sanchez, M.C.; Ballester, A. Micropropagation of Fagus spp. In: Jain, S.M. and Ishii, K. (eds.), Micropropagation of woody trees and fruits. Kluwer Academic Publishers, Dordrecht, Netherlands. 2003:181–215.

    Google Scholar 

  • Vigouroux, A.; Besnard, G.; Sossey-Alaoui, K.; Tersac, M.; Berville, A. Hybrid origin of Platanus acerifolia confirmed and that of P. densicoma revealed using molecular markers. Acta Bot. Gall. 144:243–252; 1997.

    Google Scholar 

  • Waldmann, P.; García, M.R.; Sillanpää, M.J. Comparing Bayesian estimates of genetic differentiation of molecular traits: an application to Pinus sylvestris. Heredity 94:623–629; 2005.

    PubMed  CAS  Google Scholar 

  • Wang, Z.-R. The review and outlook on hybridization in tulip tree breeding in China. Journal of Nanjing Forest University 27:76–78; 2003.

    Google Scholar 

  • Wang, G.; Zhang, H.-P.; Hu, H.-F.; Niu, J.-X.; Ma, B.-G. Identification of a RAPD marker related to early-bearing characteristic of walnut seedlings. Journal of Fruit Science 21:485–487; 2004.

    CAS  Google Scholar 

  • Whittemore, A.T.; Schaal, B.A. Interspecific gene flow in sympatric oaks. Proc. Natl. Acad. Sci. U S A 88:2540–2544; 1991.

    PubMed  CAS  Google Scholar 

  • Wilhelm, E. Micropropagation of juvenile sycamore maple via adventitious shoot formation by use of thidiazuron. Plant Cell Tissue Organ Cult. 57:57–60; 1999.

    CAS  Google Scholar 

  • Wilhelm, E. Somatic embryogenesis in oak (Quercus spp.). In Vitro Cell. Dev. Biol. Plant 36:349–357; 2000.

    CAS  Google Scholar 

  • Wilhelm, E.; Hristoforoglu, K.; Fluck, S.; Burg, K. Detection of microsatellite instability during somatic embryogenesis of oak (Quercus robur L.). Plant Cell Rep. 23:790–795; 2005.

    PubMed  CAS  Google Scholar 

  • Woeste, K.; McGranahan, G.H.; Bernatzky, R. Randomly amplified polymorphic DNA loci from a walnut backcross [(Juglans hindsii × J. regia) × J. regia]. J. Am. Soc. Hortic. Sci. 121:358–361; 1996a.

    CAS  Google Scholar 

  • Woeste, K.; McGranahan, G.H.; Bernatzky, R. The identification and characterization of a genetic marker linked to hypersensitivity to the cherry leafroll virus in walnut. Mol. Breed. 2:261–266; 1996b.

    CAS  Google Scholar 

  • Wright, S. The genetical structure of populations. Ann. Eugenic.15:323–354; 1951.

    Google Scholar 

  • Wu, R.; Zeng, A.-B.; McKeand, S.; O’Malley, D. The case for molecular mapping in forest tree breeding. Plant Breed. Rev. 19: 41–67; 2000.

    CAS  Google Scholar 

  • Xia, Y.; Liang, H.M.; Chen, S.Y.; Sun, Z.X.; Wang, T.M.; Li, X.Y.; Fu, L.L.; Huang, J.; Yan, L.P.; Liu, D.X. Betaine aldehyde dehydrogenase (BADH) gene transformation of tetraploid clone of black locust mediated by Agrobacterium. Scientia Agricultura Sinica 37:1208–1211; 2004.

    CAS  Google Scholar 

  • Xie, C.Y.; El-Kassaby, Y.A.; Ying, C.C. Genetics of red alder (Alnus rubra Bong.) populations in British Columbia and its implications for gene resources management. New For. 24:97–112; 2002.

    Google Scholar 

  • Xie, C.; Xu, S. Efficiency of multistage marker-assisted selection in the improvement of multiple quantitative traits. Heredity 80:489–498; 1997.

    Google Scholar 

  • Xing, Z.Z.; Satchwell, M.F.; Powell, W.A.; Maynard, C.A. Micropropagation of American chestnut: increasing rooting rate and preventing shoot-tip necrosis. In Vitro Cell. Dev. Biol. Plant 33:43–48; 1997.

    Google Scholar 

  • Yanchuk, A.D. A quantitative framework for breeding and conservation of forest tree genetic resources in British Columbia. Can. J. For. Res. 31:566–576; 2001.

    Google Scholar 

  • Yang, J.; Kamdem, D.P.; Keathley, D.E.; Han, K.H. Seasonal changes in gene expression at the sapwood–heartwood transition zone of black locust (Robinia pseudoacacia) revealed by cDNA microarray analysis. Tree Physiol. 24:461–474; 2004.

    PubMed  CAS  Google Scholar 

  • Yang, J.; Park, S.C.; Kamdem, D.P.; Keathley, D.E.; Retzel, E.; Paule, C.; Kapur, V.; Han, K.H. Novel gene expression profiles define the metabolic and physiological processes characteristic of wood and its extractive formation in a hardwood tree species Robinia pseudoacacia. Plant Mol. Biol. 52:935–956; 2003.

    PubMed  CAS  Google Scholar 

  • Youn, Y.; Ishii, K.; Saito, A.; Ohba, K. In vitro plantlet regeneration from axillary buds of mature trees of Tilia cordata. J. Jap. For. Soc. 70:315–317; 1988.

    Google Scholar 

  • Zamboni, A.; Dondini, L.; Tonon, G. cDNA-AFLP study of gene expression during somatic embryogenesis in Fraxinus angustifolia Vhal. J. Hortic. Sci. Biotech. 80:240–244; 2005.

    CAS  Google Scholar 

  • Zegzouti, R.; Arnould, M.F.; Favre, J.M. Histological investigation of the multiplication step in secondary somatic embryogenesis of Quercus robur L. Ann. For. Sci. 58:681–690; 2001.

    Google Scholar 

  • Zhan, Y.G.; Liu, Z.H.; Wang, Y.C.; Wang, Z.Y.; Yang, C.P.; Liu, G.F. Transformation of insect resistant gene into birch. J. Northeast For Univ. 29:4–6; 2001.

    CAS  Google Scholar 

  • Ziegenhagen, B.; Fladung, M. DNA markers for identification and evaluation of genetic resources in forest trees: case studies in Abies, Picea and Populus. In: Lörz, H.; Wenzel, G. (eds.). Biotechnology in Agriculture and Forestry: Molecular Marker Systems, Vol. 55. Berlin Heidelberg New York, Springer; 2004: 413–429.

  • Ziehe, M.; Hattemer, H.H. Effects of spatial genetic structures in beech stands on the collected seed. Mitteilungen aus der Forschungsanstalt fur Waldokologie und Forstwirtschaft Rheinland-Pfalz 52:102–120; 2004.

    Google Scholar 

  • Zoldos, V.; Siljak-Yakovlev, S.; Papes, D.; Sarr, A.; Panaud, O. Representational difference analysis reveals genomic differences between Q. robur and Q. suber: implications for the study of genome evolution in the genus Quercus. Mol. Genet. Genom. 265:234–241; 2001.

    CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Drs. Charles A. Maynard, Valerie Hipkins, and Kim Steiner for critical review of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paula M. Pijut.

Additional information

Editor: P. Lakshmanan

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pijut, P.M., Woeste, K.E., Vengadesan, G. et al. Technological advances in temperate hardwood tree improvement including breeding and molecular marker applications. In Vitro Cell.Dev.Biol.-Plant 43, 283–303 (2007). https://doi.org/10.1007/s11627-007-9026-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11627-007-9026-9

Keywords

Navigation