Skip to main content
Log in

Production of transgenic maize from bombarded type II callus: Effect of gold particle size and callus morphology on transformation efficiency

  • Published:
In Vitro Cellular & Developmental Biology - Plant Aims and scope Submit manuscript

Summary

Here we present a routine and efficient protocol for year-round production of fertile transgenic maize plants. Type II callus derived from maize Hi II immature zygotic embryos was transformed using the PDS 1000/He biolistic gun and selected on bialaphos. In an effort to improve the transformation protocol, the effects of gold particle size and callus morphology on transformation efficiency were investigated. Reducing gold particle size from 1.0 μm or 0.6 μm resulted in a significant increase in the rate of recovery of bialaphos-resistant clones from Type II callus. The average transformation efficiency of pre-embryogenic, early embryogenic and late embryogenic callus did not vary significantly. Rates of transformation, regeneration and fertility achieved for Type II callus are summarized and compared to those achieved for greenhouse- and field-derived immature zygotic embryos.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Armstrong, C.L.; Green, C. E. Establishment and maintenance of friable, embryogenic maize callus and the involvement of l-proline. Planta 164:207–214; 1985.

    Article  CAS  Google Scholar 

  • Armstrong, C. L.; Green, C. E.; Phillips, R. L. Development and availability of germplasm with high Type II culture formation response. Maize Genetics Cooperative Newsletter 65:92–93; 1991.

    Google Scholar 

  • Armstrong, C. L.; Regeneration of plants from somatic cell cultures: applications for in vitro genetic manipulation. In: Freeling, M.; Walbot, V., eds. The maize handbook. New York: Springer-Verlag; 1994:663–671.

    Google Scholar 

  • Armstrong, C. L.; Parker, G. B.; Pershing, J. C.; Brown, S.; Sanders, P.; Duncan, D.; Stone, T.; Dean, D.; DeBoer, D.; Hart, J.; Howe, A.; Morrish, F.; Pajeau, M.; Petersen, W.; Reich, B.; Rodriguez, R.; Santino, C.; Sato, S.; Schuler, W.; Sims, S.; Stehling, S.; Tarochione, L.; Fromm, M. E. Field evaluation of European Corn Borer control in progeny of 173 transgenic corn events expressing an insecticidal protein from Bacillus thuringiensis. Crop. Sci. 35:550–557; 1995.

    Article  Google Scholar 

  • Brettschneider, R.; Becker, D.; Lorz, H., Effecient transformation of scutellar tissue of immature maize embryos. Theor. Appl. Genet. 94:737–748; 1997.

    Article  CAS  Google Scholar 

  • Chu, C. C.; Wang, C. C.; Sun, C. S.; Hsu, C.; Yin, K. C.; Chu, C. Y.; Bi, F. Y. Establishment of an efficient medium for anther culture of rice through comparative experiments on the nitrogen source. Sci. Sin. 18:659–668; 1975.

    Google Scholar 

  • Christensen, A. H.; Quail, P. H. Ubiquitin promoter-based vectors for high-level expression of selectable and/or screenable marker genes in monocotyledonous plants. Transgenic Res. 5:213–218; 1996.

    Article  PubMed  CAS  Google Scholar 

  • Dennehey, B. K.; Petersen, W. L.; Ford-Santino, C.; Pajeau, M.; Armstrong, C. L. Comparison of selective agents for use with the selectable marker gene bar in maize transformation. Plant Cell Tiss. Org. Cult. 36:1–7; 1994.

    Article  CAS  Google Scholar 

  • Dunder, E.; Dawson, J.; Suttie, J.; Pace, G. Maize transformation by microprojectile bombardment of immature embryos. In: Potrykus, I.; Spangenberg, G., eds. Gene transfer to plants, Berlin: Springer-Verlag; 1995:127–138.

    Google Scholar 

  • Fromm, M. E.; Morrish, F.; Armstrong, C. L.; Williams, R.; Thomas, J.; Klein, T. Inheritance and expression of chimeric genes in the progeny of transgenic maize plants. Bio/Technology 8:833–839; 1990.

    Article  PubMed  CAS  Google Scholar 

  • Fromm, M. Production of transgenic maize plants by microprojectile-mediated gene transfer. In: Freeling, M.; Walbot, V., eds. The maize handbook. New York: Springer-Verlag; 1994:677–684.

    Google Scholar 

  • Gordon-Kamm, W. J.; Spencer, T. M.; Mangano, M. L.; Adams, T.; Daines, R.; Start, W.; O'Brien, J.; Chambers, S.; Adams Jr., W.; Willetts, N.; Rice, T.; Mackey, C.; Krueger, R.; Kausch, A.; Lemaux, P. Transformation of maize cells and regeneration of fertile transgenic plants. Plant Cell 2:603–618; 1990.

    Article  PubMed  CAS  Google Scholar 

  • Gordon-Kamm, W. J.; Baszczynski, C. L.; Bruce, W. B.; Tomes, D. T. Transgenic Cereals—Zea mays (maize). In: Vasil, I. K. ed. Molecular improvement of cereal crops. Great Britain: Kluwer Academic Publishers; 1999:189–253.

    Google Scholar 

  • Ishida, Y.; Hideaki, S.; Ohta, S.; Hiei, Y.; Komari, T.; Kumashiro, T. High efficiency transformation of maize (Zea mays L.) mediated by Agrobacterium tumefaciens. Nature Biotechnol. 14:745–750; 1996.

    Article  CAS  Google Scholar 

  • Kausch, A. P.; Adams, T. R.; Mangano, M.; Zachwieja, S.; Gordon-Kamm, W.; Daines, R.; Willetts, N. G.; Chambers, S.; Adams, Jr. W.; Anderson, A.; Williams, G.; Haines, G. Effects of microprojectile bombardment on embryogenic suspension cell cultures of maize (Zea mays L.) used for genetic transformation. Planta 196:501–509; 1995.

    Article  CAS  Google Scholar 

  • Klein, T. M.; Gradziel, T.; Fromm, M. E.; Sanford, J. C. Factors influencing gene delivery into Zea mays cells by high velocity microprojectiles. Bio/Technol. 6:559–563; 1988.

    Article  CAS  Google Scholar 

  • Kohli, A.; Leech, M.; Vain, P.; Laurie, D. A.; Christou, P. Transgene organization in rice engineered through direct DNA transfer supports a two-phase integration mechanism mediated by the establishment of integration hot spots. Proc. Natl. Acad. Sci. 95:7203–7208; 1998.

    Article  PubMed  CAS  Google Scholar 

  • Koziel, M. G.; Beland, G. L.; Bowman, C.; Carozzi, N. B.; Crenshaw, R.; Crossland, L.; Dawson, J.; Desai, N.; Hill, M.; Kadwell, S.; Launis, K.; Lewis, K.; Maddox, D.; McPherson, K.; Meghji, M.; Merlin, E.; Rhodes, R.; Warren, G.; Wright, M.; Evola, S. Field performance of elite transgenic maize plants expressing an insecticidal protein derived from Bacillus thuringiensis. Bio/Technology 11:194–200; 1993.

    Article  CAS  Google Scholar 

  • McCain, J. W.; Kamo, K. K.; Hodges, T. K. Characterization of somatic embryo development and plant regeneration from friable maize callus cultures. Bot. Gaz. 149:16–20; 1988.

    Article  Google Scholar 

  • Murashige, T.; Skoog, F., A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 15:473–497; 1962.

    Article  CAS  Google Scholar 

  • Pareddy, D.; Petolino, J.; Skokut, T.; Hopkins, N.; Miller, M.; Welter, M.; Smith, K.; Clayton, D.; Pescitelli, S.; Gould, A. Maize transformation via helium blasting. Maydica 42:143–154; 1997.

    Google Scholar 

  • Pescitelli, S. M.; Sukhapinda, K., Stable transformation via electroporation into maize Type II callus and regeneration of fertile transgenic plants. Plant Cell Rep. 14:712–716; 1995.

    Article  CAS  Google Scholar 

  • Randolph-Anderson, B.; Boynton, J. E.; Dawson, J. Sub-micron gold particles are superior to larger particles for efficient biolistic transformation of organelles and some cell types. Bio-rad Literature On-Line. Available http.www.bio-rad.com/44684.html; 1995.

  • Register, III, J. C.; Peterson, D. J.; Bell, P. J.; Bullock, W. P.; Evans, I.; Frame, B.; Greenland, A.; Higgs, N.; Jepson, I.; Jiao, S.; Lewnau, C.; Sillick, J.; Wilson, H. M., Structure and function of selectable and non-selectable transgenes in maize after introduction by particle bombardment. Plant Mol. Biol. 25:951–961; 1994.

    Article  PubMed  CAS  Google Scholar 

  • Sambrook, J.; Fritsch, E. F.; Maniatis, T., Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor, New York: Cold Spring Harbor Laboratory Press; 1989.

    Google Scholar 

  • Sanford, J. C.; Smith, F. D.; Russel, J. A. Optimizing the biolistic process for different biological applications. Methods Enzymol. 217:483–509; 1993.

    Article  PubMed  CAS  Google Scholar 

  • Sellmer, J. C.; Ritchie, S. W.; Kin, I. S.; Hodges, T. K. Initiation, maintenance and plant regeneration of type II callus and suspension cells. In: Freeling, M.; Walbot, V., eds. The maize handbook. New York: Springer-Verlag; 1994:671–677.

    Google Scholar 

  • Songstad, D. D.; Armstrong, C. L.; Petersen, W. L. AgNO3 increases type II callus production from immature embryos of maize inbred B73 and its derivatives. Plant Cell Rep. 6:699–702; 1991.

    Google Scholar 

  • Songstad, D. D.; Amstrong, C. L.; Peterson, W. L.; Hairston, B.; Hinchee, M. A. W. Production of transgenic maize plants and progeny by bombardment of Hi-II immature embryos. In Vitro Cell. Dev. Biol.-Plant 32:179–183; 1996.

    Google Scholar 

  • Spencer, T. M.; Gordon-Kamm, W. J.; Daines, R. J.; Start, W. G.; Lemaux, P. G. Bialaphos selection of stable transformants from maize cell culture. Theor. appl. Genet. 79:625–631; 1990.

    Article  CAS  Google Scholar 

  • Vain, P.; McMullen, M. D.; Finer, J. J. Osmotic treatment enhances particle bombardment-mediated transient and stable transformation of maize. Plant Cell Rep. 12:84–88; 1993.

    Article  Google Scholar 

  • Walters, D. A.; Vetsch, C. S.; Potts, D. E.; Lundquist, R. C., Transformation and inheritance of a hygromycin phosphotransferase gene in maize plants. Plant Mol. Biol. 18:189–200; 1992.

    Article  PubMed  CAS  Google Scholar 

  • Wan, Y.; Widholm, J. M.; Lemaux, P. G. Type I callus as a bombardment target for generating fertile transgenic maize (Zea mays L.). Planta 196:7–14; 1995.

    Article  CAS  Google Scholar 

  • Welter, M. E.; Clayton, D. S.; Miller, M. A.; Petolino, J. F. Morphotypes of friable embryogenic maize callus. Plant Cell Rep. 14:725–729; 1995.

    Article  CAS  Google Scholar 

  • Wilson, H. M.; Bullock, W. P.; Dunwell, J. M.; Ellis, J. R.; Frame, B.; Register, III, J. C.; Thompson, J. A. Maize. In: Wang, K.; Herrera-Estrella, A.; Van Montagu, M., eds. Transformation of plants and soil microorganisms. Cambridge: Cambridge University Press; 1995;65–80.

    Google Scholar 

  • Zhang, S.; Warkentin, D.; Sun, B.; Zhong, H.; Sticklen, M. Variation in the inheritance of expression among subclones from unselected (uidA) and selected (bar) transgenes in maize (Zea mays L.). Theor. Appl. Genet. 92:742–761; 1996.

    Google Scholar 

  • Zhao, Z. Y.; Gu, W.; Cai, T.; Tagliani, L. A.; Hondred, D. A.; Bond, D.; Krell, S.; Rudert, M. L.; Bruce, W. B.; Pierce, D. A. Molecular analysis of T0 plants transformed by Agrobacterium and comparison of Agrobacterium-mediated transformation with bombardment transformation in maize. Maize Genetics Cooperative Newsletter 72:34–37; 1998.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kan Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Frame, B.R., Zhang, H., Cocciolone, S.M. et al. Production of transgenic maize from bombarded type II callus: Effect of gold particle size and callus morphology on transformation efficiency. In Vitro Cell.Dev.Biol.-Plant 36, 21–29 (2000). https://doi.org/10.1007/s11627-000-0007-5

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11627-000-0007-5

Key words

Navigation