Skip to main content
Log in

Behavior of a cell line derived from normal human hepatocytes on non-physiological and physiological-type substrates: Evidence for enhancement of secretion of liver-specific proteins by a three-dimensional growth pattern

  • Cellular Models
  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Summary

The behavior of a recently described cell line, HH25, derived from normal human hepatocytes, has been investigated on several different substrates—tissue-culture plastic, glass, a thin layer of rat-tail collagen I, and thin layers or thick gels of extracellular matrix derived from the Engelbreth-Holm-Swarm murine sarcoma (EHS matrix). Cellular morphology, proliferation, and secretion of three hepatocyte-specific proteins (albumin, α1 acid glycoprotein, and α1 antitrypsin) have been examined. There were no differences in morphology, proliferation, or differentiated function in the cells on either plastic, glass, collagen, I, or a thin layer of EHS matrix, but on a thick EHS matrix gel the cells altered their morphology (forming three-dimensional colonies with canalicular-like structures) and their production of albumin and α1 acid glycoprotein was enhanced. This suggests that the enhanced differentiated function is associated with the morphological change (occurring only on the thick EHS gel) rather than with receptor-mediated cell-matrix interactions (which can also occur on the thin layer of EHS matrix). This cell line is therefore a good in vitro cellular model for the investigation of the roles of morphological changes and of cell-cell and cell-matrix interactions in the control of human hepatocyte behavior without the need for an extensive source of primary tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barcellos-Hoff, M. H.; Aggeler, J.; Ram, T. G., et al. Functional differentiation and alveolar morphogenesis of primary mammary cultures on reconstituted basement membrane. Development 105:223–235; 1989.

    PubMed  CAS  Google Scholar 

  2. Berthiaume, F.; Moghe, P. V.; Toner, M., et al. Effect of extracellular matrix topology on cell structure, function, and physiological responsiveness: hepatocytes cultured in a sandwich configuration. FASEB J. 10:1471–1484; 1996.

    PubMed  CAS  Google Scholar 

  3. Bhavani, K.; Brown, N. V.; Carlson, R. I., et al. The effect of ethanol and extracellular matrix on induction of p36 protein kinase substrate expression in rat hepatocytes. Biochem. Biophys. Res. Comm. 196:1454–1458; 1993.

    Article  PubMed  CAS  Google Scholar 

  4. Blum, J. L.; Wicha, M. S. Role of the cytoskeleton in laminin induced gene expression. J. Cell. Physiol. 135:13–22; 1988.

    Article  PubMed  CAS  Google Scholar 

  5. Blum, J. L.; Zeigler, M. E.; Wicha, M. Regulation of rat mammary gene expression by extracellular matrix components. Exp. Cell Res. 173:322–340; 1987.

    Article  PubMed  CAS  Google Scholar 

  6. Bretton, R. H.; Pennypacker, J. P. Butyric acid causes morphological changes in cultured chondrocytes through alterations in the extracellular matrix. J. Cell. Physiol. 138:197–204; 1989.

    Article  PubMed  CAS  Google Scholar 

  7. Chen, L.; Bissell, M. J. A novel regulatory mechanism for whey acidic protein gene expression. Cell Regul. 1:45–54; 1989.

    PubMed  CAS  Google Scholar 

  8. Denziot, F.; Lang, R. Rapid colorimetric assay for cell growth and survival: modifications to the tetrazolium dye procedure giving improved sensitivity and reliability. J. Immunol. Methods 89:271–277; 1989.

    Article  Google Scholar 

  9. Dipersio, C. H.; Jackson, D. A.; Zaret, K. S. The extracellular matrix coordinately modulates liver transcription factors and hepatocyte morphology. Mol. Cell. Biol. 11:4405–4414; 1991.

    PubMed  CAS  Google Scholar 

  10. Gjessing, R.; Seglen, P. O. Adsorption, simple binding and complex binding of rat hepatocytes to various in vitro substrata. Exp. Cell Res. 129:239–249; 1980.

    Article  PubMed  CAS  Google Scholar 

  11. Hynes, R. O. Integrins: a family of cell surface receptors. Cell 48:549–554; 1987.

    Article  PubMed  CAS  Google Scholar 

  12. Karikusa, F.; Sawasaki, Y. The restoration of the functions of serially passaged calf hepatocytes by spheroid formation. In Vitro Cell. Dev. Biol. 32:30–27; 1996.

    CAS  Google Scholar 

  13. Kennedy, J. R.; Williams, R. W.; Gray, J. P. Use of Peldri II (a fluorocarbon solid at room temperature) as an alternative to critical point drying for biological tissues. J. Electron Microsc. Tech. 11:117–125; 1989.

    Article  PubMed  CAS  Google Scholar 

  14. Kleinman, H. K.; McGarvey, M. L.; Hassell, J. R., et al. Basement membrane complexes with biological activity. Biochemistry 25:312–318; 1986.

    Article  PubMed  CAS  Google Scholar 

  15. Knowles, B. B.; Howe, C. C.; Aden, D. P. Human hepatocellular carcinoma cell lines secrete the major plasma proteins and hepatitis B surface antigen. Science 209:497–499; 1980.

    Article  PubMed  CAS  Google Scholar 

  16. Kono, Y.; Roberts, E. A. Modulation of the expression of liver-specific functions in novel human hepatocyte cell lines cultured in a collagen gel sandwich configuration. Biochem. Biophys. Res. Comm. 220:628–632; 1996.

    Article  PubMed  CAS  Google Scholar 

  17. LeCluyse, E. L.; Adus, K. L.; Hochman, J. H. Formation of extensive canalicular networks by rat hepatocytes cultured in collagen-sandwich configuration. Am. J. Physiol. 266:C1764–1774; 1994.

    PubMed  CAS  Google Scholar 

  18. Lindblad, W. J.; Schuetz, E. G.; Redford, K. S., et al. Hepatocellular phenotype in vitro is influenced by biophysical features of the collagenous substratum. Hepatology 13:282–288; 1991.

    PubMed  CAS  Google Scholar 

  19. Martinez-Hernandez, A.; Amenta, P. S. The hepatic extracellular matrix. I. Components and distribution in normal liver. Virchows Arch. A Pathol. Anat. Histopathol. 423:1–11; 1993.

    Article  PubMed  CAS  Google Scholar 

  20. Moghe, P. V.; Berthiaume, F.; Ezzell, R. M., et al. Role of extracellular matrix composition and configuration in maintenance of hepatocyte polarity and function. Biomaterials 17:373–385; 1996.

    Article  PubMed  CAS  Google Scholar 

  21. Mooney, D. J.; Hansen, L.; Vacanti, J., et al. Switching from differentiation to growth in hepatocytes: control by extracellular matrix. J. Cell. Physiol. 151:497–505; 1992.

    Article  PubMed  CAS  Google Scholar 

  22. Mooney, D. J.; Langer, R.; Ingber, D. E. Cytoskeletal filament assembly and the control of cell spreading and function by extracellular matrix. J. Cell Sci. 108:2311–2320; 1995.

    PubMed  CAS  Google Scholar 

  23. Mosmann, T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J. Immunol. Methods 65:55–63; 1983.

    Article  PubMed  CAS  Google Scholar 

  24. Musat, A. I.; Sattler, C. A.; Sattler, G. L., et al. Reestablishment of cell polarity of rat hepatocytes in primary culture. Hepatology 18:198–205; 1993.

    PubMed  CAS  Google Scholar 

  25. Nakabayashi, H.; Taketa, K.; Miyano, K., et al. Growth of human hepatoma cell lines with differentiated functions in chemically defined medium. Cancer Res. 42:3858–3863; 1982.

    PubMed  CAS  Google Scholar 

  26. Nakamura, T.; Yoshimoto, K.; Nakayama, Y., et al. Reciprocal modulation of growth and differentiated functions of mature rat hepatocytes in primary culture by cell-cell contact and cell membranes. Proc. Natl. Acad. Sci. USA 80:7229–7233; 1983.

    Article  PubMed  CAS  Google Scholar 

  27. Nebe, B.; Rychly, J.; Knopp, A., et al. Mechanical induction of β1-integrin-mediated calcium signalling in a hepatocyte cell line. Exp. Cell Res. 218:479–484; 1995.

    Article  PubMed  CAS  Google Scholar 

  28. Oda, H.; Nozawa, K.; Hitomi, Y., et al. Laminin-rich extracellular matrix maintains high level of hepatocyte nuclear factor 4 in rat hepatocyte culture. Biochem. Biophys. Res. Comm. 212:800–805; 1995.

    Article  PubMed  CAS  Google Scholar 

  29. Pfeifer, A. M. A.; Cole, K. E.; Smoot, D. T., et al. Simian virus 40 large tumor antigen-immortalized normal human liver epithelial cells express hepatocyte characteristics and metabolize chemical carcinogens. Proc. Natl. Acad. Sci. USA 90:5123–5127; 1993.

    Article  PubMed  CAS  Google Scholar 

  30. Ponce, M. D. L.; Rojkind, M. Rat hepatocytes attach to laminin present in liver biomatrix by a Mg+ +-dependent mechanism. Hepatology 22:620–628; 1995.

    Article  PubMed  CAS  Google Scholar 

  31. Roberts, E. A.; Letarte, M.; Squire, J., et al. Characterization of human hepatocyte lines derived from normal liver tissue. Hepatology 19:1390–1399; 1994.

    PubMed  CAS  Google Scholar 

  32. Schuetz, E. G.; Li, D.; Omiecinski, C. J., et al. Regulation of gene expression in adult rat hepatocytes cultured on a basement membrane matrix. J. Cell. Physiol. 134:309–323; 1988.

    Article  PubMed  CAS  Google Scholar 

  33. Shannon, J. M.; Pitelka, D. R. The influence of cell shape on the induction of functional differentiation in mouse mammary epithelial cells in vitro. In Vitro Cell. Dev. Biol. 17:1016–1028; 1981.

    Article  CAS  Google Scholar 

  34. Williams, G. M.; Weisburger, E. K.; Weisburger, J. H. Isolation and long-term culture of epithelial-like cells from rat liver. Exp. Cell Res. 69:106–112; 1971.

    Article  PubMed  CAS  Google Scholar 

  35. Wu, G. S. Establishment and mechanistic characterization of SV40 T antigen immortalized hepatocytes. Chung Hua Chung Liu Tsa Chih 15:415–418; 1993.

    PubMed  CAS  Google Scholar 

  36. Vukicevic, S.; Kleinman, H. K.; Luyten, F. P., et al. Identification of multiple active growth factors in basement membrane Matrigel suggests caution in interpretation of cellular activity related to extracellular membrane components. Exp. Cell Res. 202:1–8; 1992.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smalley, M., Leiper, K., Floyd, D. et al. Behavior of a cell line derived from normal human hepatocytes on non-physiological and physiological-type substrates: Evidence for enhancement of secretion of liver-specific proteins by a three-dimensional growth pattern. In Vitro Cell.Dev.Biol.-Animal 35, 22–32 (1999). https://doi.org/10.1007/s11626-999-0040-6

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11626-999-0040-6

Key words

Navigation