Skip to main content
Log in

Biliverdin protects against cisplatin-induced apoptosis of renal tubular epithelial cells

  • Published:
Journal of Huazhong University of Science and Technology [Medical Sciences] Aims and scope Submit manuscript

Summary

Biliverdin (BV) has long been thought to be a cytotoxic metabolic waste product. It has also been demonstrated to have important cytoprotective functions during oxidative stress. The present study aimed to examine the cytoprotective effect of BV on NRK-52E cells, a proximal tubular cell line derived from rat kidney. Cells were treated with 50 µmol/L cisplatin for 24 h (cisplatin group) or pre-treated with BV for 30 min, then with 50 µmol/L cisplatin for 24 h (cisplatin+BV group). Those given no treatment served as a control. Cell apoptosis was evaluated by flow cytometry and cell viability by Cell Counting Kit-8 (CCK-8). The protein expressions of cleaved caspase3, Bax and Bcl-2 were assessed by Western blotting. Reactive oxygen species (ROS) levels were measured using carboxydichlorodihydrofluorescein diacetate (H2DCF). The results showed that cisplatin induced the apoptosis of NRK-52E cells, decreased cell viability, and increased the formation of ROS by upregulating the expression of cleaved caspase3 and Bax and decreasing Bcl-2 protein expression. These effects could be significantly reversed by pretreatment with BV. It was concluded that BV can protect against cisplatin-induced cell apoptosis through the anti-oxidative effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bagshaw SM. Short-and long-term survival after acute kidney injury. Nephrol Dial Transplant, 2008,23(7): 2126–2128

    Article  PubMed  Google Scholar 

  2. Chertow GM, Burdick E, Honour M, et al. Acute kidney injury, mortality, length of stay, and costs in hospitalized patients. J Am Soc Nephrol, 2005,16(11):3365–3370

    Article  PubMed  Google Scholar 

  3. Togel FE, Westenfelder C. Kidney protection and regeneration following acute injury: progress through stem cell therapy. Am J Kidney Dis, 2012,60(6):1012–1022

    Article  PubMed  Google Scholar 

  4. Waikar SS, Liu KD, Chertow GM. Diagnosis, epidemiology and outcomes of acute kidney injury. Clin J Am Soc Nephrol, 2008,3(3):844–861

    Article  PubMed  Google Scholar 

  5. Fukasawa H, Furuya R, Yasuda H, et al. Anti-cancer agent-induced nephrotoxicity. Anticancer Agents Med Chem, 2014,14(7):921–927

    Article  CAS  PubMed  Google Scholar 

  6. Peres LA, da Cunha AD, Jr. Acute nephrotoxicity of cisplatin: molecular mechanisms. J Bras Nefrol, 2013, 35(4):332–340

    Article  PubMed  Google Scholar 

  7. Camano S, Lazaro A, Moreno-Gordaliza E, et al. Cilastatin attenuates cisplatin-induced proximal tubular cell damage. J Pharmacol Exp Ther, 2010,334(2):419–429

    Article  CAS  PubMed  Google Scholar 

  8. dos Santos NA, Carvalho Rodrigues MA, Martins NM, et al. Cisplatin-induced nephrotoxicity and targets of nephroprotection: an update. Arch Toxicol, 2012, 86(8):1233–1250

    Article  PubMed  Google Scholar 

  9. Pabla N, Dong Z. Cisplatin nephrotoxicity: mechanisms and renoprotective strategies. Kidney Int, 2008,73(9): 994–1007

    Article  CAS  PubMed  Google Scholar 

  10. Sanchez-Gonzalez PD, Lopez-Hernandez FJ, Lopez-Novoa JM, et al. An integrative view of the pathophysiological events leading to cisplatin nephrotoxicity. Crit Rev Toxicol, 2011,41(10):803–821

    Article  CAS  PubMed  Google Scholar 

  11. Stocker R, Yamamoto Y, McDonagh AF, et al. Bilirubin is an antioxidant of possible physiological importance. Science, 1987,235(4792):1043–1046

    Article  CAS  PubMed  Google Scholar 

  12. Baranano DE, Rao M, Ferris CD, et al. Biliverdin reductase: a major physiologic cytoprotectant. Proc Natl Acad Sci USA, 2002,99(25):16093–16098

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Lerner-Marmarosh N, Miralem T, Gibbs PE, et al. Human biliverdin reductase is an ERK activator; hBVR is an ERK nuclear transporter and is required for MAPK signaling. Proc Natl Acad Sci USA, 2008,105(19):6870–6875

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Maines MD. New insights into biliverdin reductase functions: linking heme metabolism to cell signaling. Physiology, 2005,20(6):382–389

    Article  CAS  PubMed  Google Scholar 

  15. Kapitulnik J, Maines MD. Pleiotropic functions of biliverdin reductase: cellular signaling and generation of cytoprotective and cytotoxic bilirubin. Trends Pharmacol Sci, 2009,30(3):129–137

    Article  CAS  PubMed  Google Scholar 

  16. Lerner-Marmarosh N, Shen J, Torno MD. Human biliverdin reductase: a member of the insulin receptor substrate family with serine/threonine/tyrosine kinase activity. Proc Natl Acad Sci USA, 2005,102(20):7109–7114

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Sedlak TW, Snyder SH. Bilirubin benefits: cellular protection by a biliverdin reductase antioxidant cycle. Pediatrics, 2004,113(6):1776–1782

    Article  PubMed  Google Scholar 

  18. Bulmer AC, Blanchfield JT, Coombes JS, et al. In vitro permeability and metabolic stability of bile pigments and the effects of hydrophilic and lipophilic modification of biliverdin. Bioorg Med Chem, 2008,16(7):3616–3625

    Article  CAS  PubMed  Google Scholar 

  19. Sheikh-Hamad D, Cacini W, Buckley AR, et al. Cellular and molecular studies on cisplatin-induced apoptotic cell death in rat kidney. Arch Toxicol, 2004,78(3):147–155

    Article  CAS  PubMed  Google Scholar 

  20. Boulikas T, Vougiouka M. Cisplatin and platinum drugs at the molecular level. Oncol Rep, 2003,10(6):1663–1682

    CAS  PubMed  Google Scholar 

  21. Sugimoto R, Tanaka Y, Noda K, et al. Preservation solution supplemented with biliverdin prevents lung cold ischaemia/reperfusion injury. Eur J Cardiothorac Surg, 2012,42(6):1035–1041

    Article  PubMed Central  PubMed  Google Scholar 

  22. Ikeda N, Inoguchi T, Sonoda N, et al. Biliverdin protects against the deterioration of glucose tolerance in db/db mice. Diabetologia, 2011, 54(8):2183–2191

    Article  CAS  PubMed  Google Scholar 

  23. Bai B, Liu Y, You Y, et al. Intraperitoneally administered biliverdin protects against UVB-induced skin photodamage in hairless mice. J Photochem Photobiol B, 2015,144:35–41

    Article  CAS  PubMed  Google Scholar 

  24. Yamashita T, Deguchi K, Sehara Y, et al. Therapeutic strategy for ischemic stroke. Neurochem Res, 2009,34(4): 707–710

    Article  CAS  PubMed  Google Scholar 

  25. Bisht K, Tampe J, Shing C, et al. Endogenous tetrapyrroles influence leukocyte responses to lipopolysaccharide in human blood: pre-clinical evidence demonstrating the anti-inflammatory potential of biliverdin. J Clin Cell Immunol, 2014,5(218):1000218

    PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen-hui Liao  (廖文慧).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lv, Q., Yao, Y., Wang, W. et al. Biliverdin protects against cisplatin-induced apoptosis of renal tubular epithelial cells. J. Huazhong Univ. Sci. Technol. [Med. Sci.] 36, 48–52 (2016). https://doi.org/10.1007/s11596-016-1540-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11596-016-1540-8

Key words

Navigation