Skip to main content

Advertisement

Log in

Shape-controlled porous carbon from calcium citrate precursor and their intriguing application in lithium-ion batteries

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Porous carbon nanosheets (PCNSs), porous carbon nanofibers (PCNFs), and flowerlike porous carbon microspheres (FPCMs) were successfully synthesized through a carbonization method combined with a simple acid pickling treatment using calcium citrate as the precursor. The as-prepared products show uniform morphologies, in which the FPCMs are self-assembled from PCNSs. As anodes of lithium-ion (Li-ion) batteries, these carbon materials deliver a stable reversible capacity above 515 mAh g−1 after 50 cycles at 100 mA g−1. Compared with PCNSs and PCNFs, FPCMs demonstrate preferable rate capability (378 mAh g−1 at 1 A g−1) and cyclability (643 mAh g−1 at 100 mA g−1). These results suggest that an appropriate select of morphology and structure will significantly improve the lithium storage capacity. The study also indicates that the novel shape-controlled porous carbon materials have potential applications as electrode materials in electronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Dunn B, Kamath H, Tarascon JM (2011) Electrical energy storage for the grid: a battery of choices. Science 334:928–935

    Article  CAS  Google Scholar 

  2. Goriparti S, Miele E, Angelis FD, Fabrizio ED, Zaccaria RP, Capiglia C (2014) Review on recent progress of nanostructured anode materials for Li-ion batteries. J Power Sources 257:421–443

    Article  CAS  Google Scholar 

  3. Qie L, Chen WM, Wang ZH, Shao QG, Li X, Yuan LX, Hu XL, Zhang WX, Huang YH (2012) Nitrogen-doped porous carbon nanofiber webs as anodes for lithium ion batteries with a superhigh capacity and rate capability. Adv Mater 24:2047–2050

    Article  Google Scholar 

  4. Ou J, Zhang YZ, Chen L, Guo Y, Xiao D (2015) Hierarchical porous carbons fabricated from silica via flame synthesis as anode materials for high-performance lithium-ion batteries. Ionics 21(7):1881–1891

    Article  CAS  Google Scholar 

  5. Yuan GH, Wang G, Wang H, Bai T (2015) Synthesis and electrochemical investigation of radial ZnO microparticles as anode materials for lithium-ion batteries. Ionics 21(2):365–371

    Article  CAS  Google Scholar 

  6. Nozaki H, Nagaka K, Hoshi K, Ohta N, Inagaki M (2009) Carbon-coated graphite for anode of lithium ion rechargeable batteries: carbon coating conditions and precursors. J Power Sources 194:486–493

    Article  CAS  Google Scholar 

  7. Zhang WJ (2011) A review of the electrochemical performance of alloy anodes for lithium-ion batteries. J Power Sources 196:13–24

    Article  CAS  Google Scholar 

  8. Wang W, Sun Y, Liu B, Wang SG, Cao MH (2015) Porous carbon nanofiber webs derived from bacterial cellulose as an anode for high performance lithium ion batteries. Carbon 91:56–65

    Article  CAS  Google Scholar 

  9. Li XF, Dhanabalan A, Gu L, Wang CL (2012) Three-dimensional porous core-shell Sn@carbon composite anodes for high-performance lithium-ion battery applications. Adv Energy Mater 2:238–244

    Article  Google Scholar 

  10. Wang LY, Zhuo LH, Cheng HY, Zhang C, Zhao FY (2015) Porous carbon nanotubes decorated with nanosized cobalt ferrite as anode materials for high-performance lithium-ion batteries. J Power Sources 283:289–299

    Article  CAS  Google Scholar 

  11. Yoo E, Nakamura J, Zhou H (2012) N-doped graphene nanosheets for Li–air fuel cells under acidic conditions. Energy Environ Sci 5:6928–6932

    Article  CAS  Google Scholar 

  12. Yan XB, Gu YH, Huang D, Gan L, Wu LX, Huang LH, Chen ZD, Huang SP, Zhou KC (2011) Binding tendency with oligonucleotides and cell toxicity of cetyltrimethyl ammonium bromide-coated single-walled carbon nanotubes. Trans Nonferrous Met Soc China 21:1085–1091

    Article  CAS  Google Scholar 

  13. Li Y, Wang J, Li X (2011) Superior energy capacity of grapheme nanosheets for a nonaqueous lithium-air battery. Chem Commun 47:9438–9440

    Article  CAS  Google Scholar 

  14. Sun B, Wang B, Su D (2012) Graphene nanosheets as cathode catalysts for lithium-air batteries with an enhanced electrochemical performance. Carbon 50:727–733

    Article  CAS  Google Scholar 

  15. Xie QS, Zhang XQ, Wu XB, Wu HY, Liu X, Yue GH, Yang Y, Peng DL (2014) Yolk-shell ZnO-C microspheres with enhanced electrochemical performance as anode material for lithium ion batteries. Electrochim Acta 125:659–665

    Article  CAS  Google Scholar 

  16. Palacin MR (2009) Recent advances in rechargeable battery materials: a chemist’s perspective. Chem Soc Rev 38:2565–2575

    Article  CAS  Google Scholar 

  17. Zhou YQ, Wang HG, Zeng Y, Li C, Shen Y, Chang JJ, Duan Q (2015) Nitrogen-doped porous carbon/Sn composites as high capacity and long life anode materials for lithium-ion batteries. Mater Lett 155:18–22

    Article  CAS  Google Scholar 

  18. Li WH, Li MS, Wang M, Zeng LC, Yu Y (2015) Electrospinning with partially carbonization in air: highly porous carbon nanofibers optimized for high-performance flexible lithium-ion batteries. Nano Energy 13:693–701

    Article  CAS  Google Scholar 

  19. Ji LW, Yao YF, Toprakci O, Lin Z, Liang YZ, Shi Q, Medford AJ, Millns CR, Zhang XW (2010) Fabrication of carbon nanofiber-driven electrodes from electrospun polyacrylonitrile/polypyrrole bicomponents for high-performance rechargeable lithium-ion batteries. J Power Sources 195:2050–2056

    Article  CAS  Google Scholar 

  20. Wu JF, Song YH, Chen YQ, Zhou RH, Chen SH, Wang L (2016) Preparation of biomass-derived hierarchically porous carbon/Co3O4 nanocomposites as anode materials for lithium-ion batteries. J Alloy Compd 656:745–752

    Article  CAS  Google Scholar 

  21. Mei T, Zhang L, Wang XB, Qian YT (2014) One-pot synthesis of carbon nanoribbons and their enhanced lithium storage performance. J Mater Chem 2:11974–11979

    Article  CAS  Google Scholar 

  22. Peng YT, Lo CT (2015) Electrospun porous carbon nanofibers as lithium ion battery anodes. J Solid State Electrochem 19:3401–3410

    Article  CAS  Google Scholar 

  23. Xu YH, Guo JC, Wang CS (2012) Sponge-like porous carbon/tin composite anode materials for lithium ion batteries. J Mater Chem 22:9562–9567

    Article  CAS  Google Scholar 

  24. Etacheri V, Wang CW, Connell MJO, Chan CK, Pol VG (2015) Porous carbon sphere anodes for enhanced lithium-ion storage. J Mater Chem 3:9861–9868

    Article  CAS  Google Scholar 

  25. Casas CDL, Li WZ (2012) A review of application of carbon nanotubes for lithium ion battery anode material. J Power Sources 208:74–85

    Article  Google Scholar 

  26. Nan D, Wang JG, Huang ZH, Wang L, Shen WC, Kang FY (2013) Highly porous carbon nanofibers from electrospun polyimide/SiO2 hybrids as an improved anode for lithium-ion batteries. Electrochem Commun 34:52–55

    Article  CAS  Google Scholar 

  27. Cao XY, Chen SQ, Wang GX (2014) Porous carbon particles derived from natural peanut shells as lithium ion battery anode and its electrochemical properties. Mater Lett 4:819–826

    Google Scholar 

  28. Zhang F, Wang KX, Li GD, Chen JS (2009) Hierarchical porous carbon derived from rice straw for lithium ion batteries with high-rate performance. Electrochem Commun 11:130–133

    Article  CAS  Google Scholar 

  29. Chang JL, Gao ZY, Wang XR, Wu DP, Xu F, Wang X, Guo YM, Jiang K (2015) Activated porous carbon prepared from paulownia flower for high performance supercapacitor electrodes. Electrochim Acta 157:290–298

    Article  CAS  Google Scholar 

  30. Fey GTK, Chen CL (2001) High-capacity carbons for lithium-ion batteries prepared from rice husk. J Power Sources 97:47–51

    Article  Google Scholar 

  31. Hwang YJ, Jeong SK, Nahm KS, Shin JS, Manuel SA (2007) Pyrolytic carbon derived from coffee shells as anode materials for lithium batteries. J Phys Chem Solids 68:182–188

    Article  CAS  Google Scholar 

  32. Ru HH, Bai NB, Xiang KX, Zhou W, Chen H, Zhao XS (2016) Porous carbons derived from microalgae with enhanced electrochemical performance for lithium-ion batteries. Electrochim Acta 194:10–16

    Article  CAS  Google Scholar 

  33. Pan QM, Qin LM, Liu J, Wang HB (2010) Flower-like ZnO–NiO–C films with high reversible capacity and rate capability for lithium-ion batteries. Electrochim Acta 55:5780–5785

    Article  CAS  Google Scholar 

  34. Guo DC, Han F, Lu AH (2015) Porous carbon anodes for a high capacity lithium-ion battery obtained by incorporating silica into benzoxazine during polymerization. Chem Eur J 21:1520–1525

    Article  CAS  Google Scholar 

  35. Li DD, Chen HB, Wei M, Ding LX, Wang SQ, Wang HH (2015) Porous nitrogen doped carbon sphere as high performance anode of sodium-ion battery. Carbon 94:888–894

    Article  CAS  Google Scholar 

  36. Liu P, Hao QL, Xia XF, Lu L, Lei W, Wang X (2015) 3D hierarchical mesoporous flowerlike cobalt oxide nanomaterials: controllable synthesis and electrochemical properties. J Phys Chem 119:8537–8546

    Article  CAS  Google Scholar 

  37. Zhong LZ, Li JF, Gao Y, Cao WQ, Zhang PC, Lai XF (2015) Preparation and characterisation of calcium citrate wires. Micro Nano Lett 10:419–421

    Article  CAS  Google Scholar 

  38. Li JF, Gao Y, Zhong LZ, Liu YQ, Liu HQ, Zou Q, Lai XF (2017) Facile self-assembly synthesis of hierarchical 3D flowerlike calcium citrate microspheres. J Nano Res 45:185–192

    Article  Google Scholar 

  39. Mansour SAA (1994) Thermal decomposition of calcium citrate tetrahydrate. Thermochimi Acta 233:243–256

    Article  CAS  Google Scholar 

  40. Tu XF, Zhou YK, Song YJ (2017) Freeze-drying synthesis of three-dimensional porous LiFePO4 modified with well-dispersed nitrogen-doped carbon nanotubes for high-performance lithium-ion batteries. Appl Surf Sci 400:329–338

    Article  CAS  Google Scholar 

  41. Dong LB, Li Y, Wang L, Hou F, Liu JC (2014) Spatial dispersion state of carbon nanotubes in a freeze-drying method prepared carbon fiber based perform and its effect on electrical conductivity of carbon fiber/epoxy composite. Mater Lett 130:292–295

    Article  CAS  Google Scholar 

  42. Zhou QQ, Chen XY, Wang B (2012) An activation-free protocol for preparing porous carbon from calcium citrate and the capacitive performance. Micropor Mesopor Mat 158:155–161

    Article  CAS  Google Scholar 

  43. Fu LJ, Tang K, Song KP, Aken PAV, Yu Y, Maier J (2014) Nitrogen doped porous carbon fibres as anode materials for sodium ion batteries with excellent rate performance. Nano 6:1384–1389

    CAS  Google Scholar 

  44. Li KY, Shua FF, Guo XW, Xue DF (2016) High performance porous MnO@C composite anode materials for lithium-ion batteries. Electrochim Acta 188:793–800

    Article  CAS  Google Scholar 

  45. Chen J, Zhou X, Mei C, Xu J, Zhou S, Wong CP (2017) Evaluating biomass-derived hierarchically porous carbon as the positive electrode material for hybrid Na-ion capacitors. J Power Sources 342:48–55

    Article  CAS  Google Scholar 

  46. Zhao Q, Wang Y, Liu J, Wang H, Zhang Y, Gao J, Lu Q, Zhou H (2015) Design and synthesis of three-dimensional hierarchical ordered porous carbons for supercapacitors. Electrochim Acta 154:110–118

    Article  CAS  Google Scholar 

  47. Zhou J, Yuan X, Xing W, Si WJ, Zhuo SP (2010) Mesoporous carbons derived from citrates for use in elec-trochemical capacitors. New Carbon Mater 25:370–375

    Article  CAS  Google Scholar 

  48. Ji LW, Zhang XW (2009) Fabrication of porous carbon nanofibers and their application as anode materials for rechargeable lithium-ion batteries. Nanotechnology 20:2101–2108

    Google Scholar 

  49. Stephanie L, Candelaria SY, Zhou W, Li X, Xiao J, Zhang JG, Wang Y, Liu J, Li J, Cao G (2012) Nanostructured carbon for energy storage and conversion. Nano Energy 1:195–220

    Article  Google Scholar 

  50. Han FD, Bai YJ, Liu R, Yao B, Qi YX, Lun N, Zhang JX (2009) Template-free synthesis of interconnected hollow carbon nanospheres for high-performance anode material in lithium-ion batteries. Adv Energy Mater 1:798–801

    Article  Google Scholar 

  51. Jia M, Niu Y, Mao Y, Liu S, Zhang Y, Bao S, Xu M (2007) Porous carbon derived from sunflower as a host matrix for ultra-stable lithium–selenium battery. J Colloid Interface Sci 490:747–753

    Article  Google Scholar 

  52. Xue JS, Dahn JR (1995) Dramatic effect of oxidation on lithium insertion in carbons made from epoxy resins. J Electrochem Soc 142:3668–3677

    Article  CAS  Google Scholar 

  53. Kaskhedikar NA, Maier J (2009) Lithium storage in carbon nanostructures. Adv Mater 21:2664–2689

    Article  CAS  Google Scholar 

  54. Ng SH, Wang J, Guo ZP, Chen J, Wang GX, Liu HK (2005) Single wall carbon nanotube paper as anode for lithium-ion battery. Electrochim Acta 51:23–28

    Article  CAS  Google Scholar 

  55. Park KT, Xia F, Kim SW, Kim SB, Song T, Paik U, Park W (2012) Facile synthesis of ultrathin ZnO nanotubes with well-organized hexagonal nanowalls and sealed layouts: applications for lithium ion battery anodes. J Phys Chem 117:1037–1043

    Google Scholar 

  56. Rolison DR, Long JW, Lytle JC, Fischer AE, Rhodes CP, McEvoy TM, Bourga ME, Lubersa AM (2009) Multifunctional 3D nanoarchitectures for energy storage and conversion. Chem Soc Rev 38:226–252

    Article  CAS  Google Scholar 

  57. Su F, Poh CK, Chen JS, Xu G, Wang D, Li Q, Lin J, Lou XW (2011) Nitrogen-containing microporous carbon nanospheres with improved capacitive properties. Energy Environ Sci 4:717–724

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Youth Foundation of China (Grant No. NSFC 51003008) and the Cooperation Key Projects between State-Owned Enterprises and Universities of Sichuan Province (Grant No. 80303-SZL021).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junfeng Li.

Electronic supplementary material

ESM 1

(DOC 1772 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, Y., Li, J., Liu, Y. et al. Shape-controlled porous carbon from calcium citrate precursor and their intriguing application in lithium-ion batteries. Ionics 23, 2301–2310 (2017). https://doi.org/10.1007/s11581-017-2089-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-017-2089-7

Keywords

Navigation