Skip to main content

Advertisement

Log in

Proton-conducting biopolymer electrolytes based on pectin doped with NH4X (X=Cl, Br)

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Research has been undertaken to develop polymer electrolytes based on biodegradable natural polymers such as cellulose acetate, starch, gelatin, and chitosan, which are being used as polymer hosts for obtaining new polymer electrolytes for their applications in various electrochemical devices such as batteries, sensors, and electrochromic windows. Pectin is a naturally available material which is extracted from the skin of citrus fruits. Pectins, also known as pectic polysaccharides, are rich in galacturonic acid. The present study focuses on the proton-conducting polymer electrolytes based on the biopolymer pectin doped with ammonium chloride (NH4Cl) and ammonium bromide (NH4Br) prepared by solution casting technique. The prepared membranes are characterized using XRD, FTIR, and AC impedance techniques to study their complexation behavior, amorphous nature, and electrical properties. The conductivity of pure pectin membrane has been found to be 9.41 × 10−7 S cm−1. The polymer systems with 30 mol% NH4Cl-doped pectin and 40 mol% NH4Br-doped pectin have been found to have maximum ionic conductivity of 4.52 × 10−4 and 1.07 × 10−3 S cm−1, respectively. The conductivity value has increased by three orders of magnitude compared to pure pectin membrane. The dielectric behavior of both the systems has been explained using dielectric permittivity and electric modulus spectra.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Pratap R, Singh B, Chandra S (2006) Polymeric rechargeable solid-state proton battery. J Power Sources 161:702–706

    Article  CAS  Google Scholar 

  2. Peighambardoust SJ, Rowshanzamir S, Amjadi M (2010) Review of the proton exchange membranes for fuel cell applications. Int J Hydrogen Energ 35:9349–9384

    Article  CAS  Google Scholar 

  3. Gao H, Lian K (2011) High rate all-solid electrochemical capacitors using proton conducting polymer electrolytes. J Power Sources 196:8855–8857

    Article  CAS  Google Scholar 

  4. Mishra K, Hashmi SA, Rai DK (2013) Nanocomposite blend gel polymer electrolyte for proton battery application. J Solid State Electrochem 17:785–793

    Article  CAS  Google Scholar 

  5. Selvakumar M, Bhat DK (2008) LiClO4 doped cellulose acetate as biodegradable polymer electrolyte for supercapacitors. J Appl Polym Sci 110:594–602

    Article  CAS  Google Scholar 

  6. Rubler A, Sakakibara K (2011) Cellulose as matrix component of conducting films. Cellulose 18:937–944

    Article  Google Scholar 

  7. Ramesh S, Liew CW, Arof AK (2011) Ion conducting corn starch biopolymer electrolytes doped with ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate. J Non-Cryst Solids 357:3654–3660

    Article  CAS  Google Scholar 

  8. Mattos RI, Tambelli C, Donoso JP, Pawlicka A (2007) NMR study of starch based polymer gel electrolytes: humidity effects. Electrochim Acta 53:1461–1465

    Article  CAS  Google Scholar 

  9. Ramasamy P (2012) A dielectric relaxation study of starch–water and starch–glycerol films. Ionics 18:413–423

    Article  CAS  Google Scholar 

  10. Avellaneda CO, Vieira DF, Al-Kahlout A, Heusing S, Leite ER, Pawlicka A, Aegerter MA (2008) All solid state electrochromic devices with gelatin-based electrolyte. Sol Energy Mater Sol Cells 92:228–233

    Article  CAS  Google Scholar 

  11. Viera DF, Avellanneda CO, Pawlicka A (2008) A.C impedance, X-ray diffraction and DSC investigation on gelatin based-electrolyte with LiClO4. Mol Cryst Liq Cryst 485:95–104

    Article  Google Scholar 

  12. Puteh R, Yahya MZA, Ali AMM, Sulaiman MA, Yahya R (2005) Conductivity studies on chitosan-based polymer electrolytes with lithium salts. Indonesian J Phys 16:17–19

    Google Scholar 

  13. Van Soest JJG, Knooren N (1997) Influence of glycerol and water content on the structure and properties of extruded starch plastic sheets during aging. J Appl Polym Sci 64:1411–1422

    Article  CAS  Google Scholar 

  14. Khiar ASA, Puteh R, Arof AK (2006) Conductivity studies of a chitosan-based polymer electrolyte. Physica B 373:23–27

    Article  CAS  Google Scholar 

  15. Koh JCH, Ahmad ZA, Mohamad AA (2012) Bacto agar-based gel polymer electrolyte. Ionics 18:359–364

    Article  CAS  Google Scholar 

  16. Leones R, Sentanin F, Rodrigues LC, Marrucho IM, Esperança JMSS, Pawlicka A, Silva MM (2012) Investigation of polymer electrolytes based on agar and ionic liquids. Express Polym Lett 6(12):1007–1016

    Article  CAS  Google Scholar 

  17. Alias SS, Mohammed AA (2013) Effect of NH4I and I2 concentration on agar gel polymer electrolyte properties for a dye-sensitized solar cell. Ionics 19:1185–1194

    Article  CAS  Google Scholar 

  18. Mohnen D (2002) Pectins and their manipulation. Blackwell Publishing and CRC Press, Oxford

    Google Scholar 

  19. Ridley BL, O’Neill MA, Mohnen D (2001) Pectins: structure, biosynthesis, and oligogalacturonide-related signaling. Phytochemistry 57:929–967

    Article  CAS  Google Scholar 

  20. Thakur BR, Singh RK, Handa AK, Rao MA (1997) Chemistry and uses of pectin—a review. Crit Rev Food Sci Nutr 37(1):47–73

    Article  CAS  Google Scholar 

  21. Andrade JR, Raphael E, Pawlicka A (2009) Plasticized pectin-based gel electrolytes. Electrochim Acta 54:6479–6483

    Article  CAS  Google Scholar 

  22. Mishra RK, Banthia AK, Majeed ABA (2012) Pectin based formulations for biomedical applications: a review. Asian J Pharm Clin Res 5(4):1–7

    CAS  Google Scholar 

  23. Assaf SM, Abul-Haija YM, Fares MM (2011) Versatile pectin grafted poly (N-isopropylacrylamide); modulated targeted drug release. J Macromol Sci, Pure Appl Chem 48:493–502

    Article  CAS  Google Scholar 

  24. Mishra RK, Datt M, Banthia AK (2008) Synthesis and characterization of pectin/PVP hydrogel membranes for drug delivery system. AAPS PharmSciTech 9(2):395–403

    Article  CAS  Google Scholar 

  25. Mishra RK, Majeed ABA, Banthia AK (2011) Development and characterization of pectin/gelatin hydrogel membranes for wound dressing. Int J Plast Tech 15(1):82–95

    Article  CAS  Google Scholar 

  26. Freiberg S, Zhu XX (2004) Polymer microspheres for controlled drug release. Int J Pharm 28:1–18

    Article  Google Scholar 

  27. Perera G, Barthelmes J, Schnürch- B (2010) A novel pectin–4-aminothiophenole conjugate microparticles for colon-specific drug delivery. J Controll Rel 145:240–246

    Article  CAS  Google Scholar 

  28. Dou H, Jiang M, Peng H, Chen D, Hong Y (2003) pH-dependent self-assembly: micellization and micelle–hollow-sphere transition of cellulose-based copolymers. Angew Chem Int Ed 42:1516–1519

    Article  CAS  Google Scholar 

  29. Tang M, Dou H, Sun K (2006) One-step synthesis of dextran-based stable nanoparticles assisted by self-assembly. Polymer 47:728–734

    Article  CAS  Google Scholar 

  30. Coimbra P, Ferreira P, De Sousa HC, Batista P, Rodrigues MA, Correia IJ, Gil MH (2011) Preparation and chemical and biological characterization of a pectin/chitosan polyelectrolyte complex scaffold for possible bone tissue engineering applications. Intern J Biolo Macromol 42:112–118

    Article  Google Scholar 

  31. Munarin F, Guerreiro SG, Grellier MA, Tanzi MC, Barbosa MA, Petrini P, Granja PL (2011) Pectin-based injectable biomaterials for bone tissue engineering. Biomacromol 12:568–577

    Article  CAS  Google Scholar 

  32. Mishra RK, Anis A, Mondal S, Dutt M, Banthia AK (2009) Preparation and characterization of amidated pectin based polymer electrolyte membranes. Chin J Polym Sci 27(5):639–646

    Article  CAS  Google Scholar 

  33. Vijaya N, Selvasekarapandian S, Vinoth Pandi D, Sindhuja S, Arun A, Karthikeyan S (2014) Bio-polymer pectin based proton conducting polymer electrolyte. 14th Asian Conference on Solid State Ionics (ACSSI 2014). Adams S, (ed) Kawamura J doi:10.3850/978–981–09-1137-9_043

  34. Du JF, Bai Y, Chu WY, Qiao LJ (2010) The structure and electric characters of proton-conducting chitosan membranes with various ammonium salts as complexants. J Polym Sci B Polym Phys 48:880–885

    Article  CAS  Google Scholar 

  35. Leones R, Mbs B, Sentanin F, Cesarino I, Pawlicka A, Ass C, Mm S (2014) Pectin-based polymer electrolytes with Ir (III) complexes. Mole Crys Liq Crys 604:117–125

    Article  CAS  Google Scholar 

  36. Hodge RM, Edward GH, Simon GP (1996) Water absorption and states of water in semicrystalline poly (vinyl alcohol) films. Polymer 37(8):1371–1376

    Article  CAS  Google Scholar 

  37. Sikkanthar S, Karthikeyan S, Selvasekarapandian S, Arunkumar D, Nithya H, Kawamura J (2016) Structural, electrical conductivity, and transport analysis of PAN–NH4Cl polymer electrolyte system. Ionics DOI. doi:10.1007/s11581-016-1645-x

    Google Scholar 

  38. Sikkanthar S, Karthikeyan S, Selvasekarapandian S, Vinoth Pandi D, Nithya S, Sanjeeviraja C (2014) Electrical conductivity characterization of polyacrylonitrile-ammonium bromide polymer electrolyte system. J Solid State Electrochem. doi:10.1007/s10008-014-2697-3

    Google Scholar 

  39. Umoren SA, Obot IB, Madhankumar A, Gasem ZM (2015) Performance evaluation of pectin as ecofriendly corrosion inhibitor for X60 pipeline steel in acid medium: experimental and theoretical approaches. Carbohydr Polym. doi:10.1016/j.carbpol.2015.02.036

    Google Scholar 

  40. Namanga J, Foba J, Ndinteh DT, Yufanyi DM, Krause RWM (2013) Synthesis and magnetic properties of a superparamagnetic nanocomposite “pectin-magnetite nanocomposite”. J Nanomater 2013:1–8. doi:10.1155/2013/137275

    Article  Google Scholar 

  41. Mishra RK, Majeed ABA, Banthia AK Synthesis, characterization and material properties of novel poly vinyl acetate grafted pectin. Int J Plast Tech doi: 10.1007/s12588–015–9117-0

  42. Sutar PB, Mishra RK, Pal K, Banthia AK (2008) Development of pH sensitive polyacrylamide grafted pectin hydrogel for controlled drug delivery system. J Mater Sci Mater Med 19:2247–2253

    Article  CAS  Google Scholar 

  43. Prabu M, Selvasekarapandian S, Kulkarni AR, Hirankumar G, Sakunthala A (2010) Ionic conductivity studies on LiSmO2 by impedance spectroscopy. Ionics 16:317–321

    Article  CAS  Google Scholar 

  44. Irvine JTC, Sinclair DC, West AR (1990) Electroceramics: characterization by impedance spectroscopy. Adv Mater 2(3):132–138

    Article  CAS  Google Scholar 

  45. Woo HJ, Majid SR, Arof AK (2011) Conduction and thermal properties of a proton conducting polymer electrolyte based on poly (ε-caprolactone). Solid State Ionics 199-200:14–20

    Article  CAS  Google Scholar 

  46. Ramesh S, Arof AK (2001) Ionic conductivity studies of plasticized poly(vinyl chloride) polymer electrolytes. Mater Sci Eng B 85:11–15

    Article  Google Scholar 

  47. Ramya CS, Selvasekarapandian S, Savitha T, Hirankumar G, Baskaran R, Bhuvaneswari MS, Angelo PC (2006) Conductivity and thermal behavior of proton conducting polymer electrolyte based on poly (N-vinyl pyrrolidone). Eur Polym J 42:2672–2677

    Article  CAS  Google Scholar 

  48. Jonscher AK (1977) The “universal” dielectric response. Nature 267:673–679

    Article  CAS  Google Scholar 

  49. Jonscher AK (1983) Dielectric relaxation in solids. Chelsea Dielectric, London, p. 284

    Google Scholar 

  50. Ramesh S, Yin TS, Liew C-W (2011) Effect of dibutyl phthalate as plasticizer on high-molecular weight poly(vinyl chloride)–lithium tetraborate-based solid polymer electrolytes. Ionics 17:705–713

    Article  CAS  Google Scholar 

  51. Rajendran S, Sivakumar M, Subadevi R (2004) Investigations on the effect of various plasticizers in PVA-PMMA solid polymer blend electrolytes. Mater Lett 58:641–649

    Article  CAS  Google Scholar 

  52. Subba Reddy CV, Han X, Zhu Q-Y, Mai L-Q, Chen W (2006) Dielectric spectroscopy studies on (PVP + PVA) polyblend film. Microelectron Eng 83:281–285

    Article  CAS  Google Scholar 

  53. Ramesh S, Yahaya AH, Arof AK (2002) Dielectric behaviour of PVC-based polymer electrolytes. Solid State Ionics 152–153:291–294

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Selvasekarapandian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vijaya, N., Selvasekarapandian, S., Sornalatha, M. et al. Proton-conducting biopolymer electrolytes based on pectin doped with NH4X (X=Cl, Br). Ionics 23, 2799–2808 (2017). https://doi.org/10.1007/s11581-016-1852-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-016-1852-5

Keywords

Navigation