Skip to main content
Log in

Morphological and electron mobility studies in nanograss In2O3 DSSC incorporating multi-walled carbon nanotubes

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

In2O3and In2O3-MWCNTs, thin films were prepared by means of sol-gel spin coating technique for dye-sensitized solar cells (DSSCs). The morphological characteristics of In2O3 and In2O3-MWCNT thin films were studied via atomic force microscopy (AFM) and field emission scanning electron microscopy (FESEM). The porous and rough surface structure of nanograss In2O3 increased the surface area for improved dye loading. The low photovoltage issue in In2O3-based DSSCs was addressed by the incorporation of MWCNTs. The bandgap decreased when In2O3 was incorporated with MWCNTs. The presence of MWCNTs in the thin film caused the fermi level (EF) to shift upward and this leads to a larger energy gap between EF and the iodine redox level (EREDOX) that results in higher photovoltage. The In2O3-MWCNT-based DSSCs exhibited better photovoltaic performance than In2O3-based DSSC with photovoltaic efficiency of 1.29 and 0.14 %, respectively. The electrochemical impedance spectroscopy (EIS unit) supported the photovoltaic performance by quantifying that the In2O3-MWCNT thin films provide more efficient charge transfer with the lowest effective recombination rate and high electron lifetime, hence improving the performance of DSSCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. O’regan B, Grätzel M (1991) A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353:737–740

    Article  Google Scholar 

  2. Lee KM, Hu CW, Chen HW, Ho KC (2008) Incorporating carbon nanotube in a low-temperature fabrication process for dye-sensitized TiO2 solar cells. Sol Energ Mat Sol C 92:1628–1633

    Article  CAS  Google Scholar 

  3. Karst N, Rey G, Doisneau B, Roussel H, Deshayes R, Consonni V, et al. (2011) Fabrication and characterization of a composite ZnO semiconductor as electron transport in glycerin dye-sensitized solar cells. Mater Sci Eng B 176:653–659

  4. Omar A, Abdullah H, Yarmo MA, Shaari S, Taha MR (2013) Morphological and electron transport studies in ZnO dye-sensitized solar cells incorporating multi-and single-walled carbon nanotubes. J Phys D Appl Phys 46:165503. doi:10.1088/0022-3727/46/16/165503

    Article  Google Scholar 

  5. Martinson AB, Elam JW, Hupp JT, Pellin MJ (2007) ZnO nanotube based dye-sensitized solar cells. Nano Lett 7:2183–2187

    Article  CAS  Google Scholar 

  6. Mahalingam S, Abdullah H, Shaari S, Muchtar A, Asshari I (2015) Structural, morphological, and electron tansport studies of annealing dependent In2O3 dye-sensitized solar cell. Sci World J . doi:10.1155/2015/4038482015

    Google Scholar 

  7. Ramasamy E, Lee J (2010) Ordered mesoporous SnO2-based photoanodes for high-performance dye-sensitized solar cells. J Phys Chem C 114:22032–22037

    Article  CAS  Google Scholar 

  8. Kim J, Kim J (2011) Fabrication of dye-sensitized solar cells using Nb2O5 blocking layer made by sol-gel method. J Nanosci Nanotechno 11:7335–7338

    Article  CAS  Google Scholar 

  9. Sharma R, Mane RS, Min SK, Han SH (2009) Optimization of growth of In2O3 nano-spheres thin films by electrodeposition for dye-sensitized solar cells. J Alloys Compd 479:840–843

    Article  CAS  Google Scholar 

  10. Gan J, Lu X, Wu J, Xie S, Zhai T, Yu M, Zhang Z, Mao Y, Wang SCI, Shen Y, Tong Y (2013) Oxygen vacancies promoting photoelectrochemical performance of In2O3 nanocubes. Sci Rep 3. doi:10.1038/srep01021

  11. Li B, Xie Y, Jing M, Bong G, Tang Y, Zhang G (2006) In2O3 hollow microspheres: synthesis from designed In(OH)3 precursors and applications in gas sensors and photocatalysis. Langmuir 22:9380–9385

    Article  CAS  Google Scholar 

  12. Li C, Zhang D, Liu X, Han S, Tang T, Han J, Zhou C (2003) In2O3 nanowires as chemical sensors. Appl Phys Lett 82:1613–1615

    Article  CAS  Google Scholar 

  13. Curreli M, Li C, Sun Y, Lei B, Gundersen MA, Thompson ME, Zhou C (2005) Selective functionalization of In2O3 nanowire mat devices for biosensing applications. J Am Chem Soc 127:6922–6923

    Article  CAS  Google Scholar 

  14. Mori S, Asano A (2010) Light intensity independent electron transport and slow charge recombination in dye-sensitized In2O3 solar cells: in contrast to the case of TiO2. J Phys Chem C 114:13113–13117

    Article  CAS  Google Scholar 

  15. Hara K, Zhao Z-G, Cui Y, Miyauchi M, Miyashita M, Mori S (2011) Nanocrystalline electrodes based on nanoporous-walled WO3 nanotubes for organic-dye-sensitized solar cells. Langmuir 27:12730–12736

    Article  CAS  Google Scholar 

  16. Miao C, Chen C, Dai Q, Xu L, Song H (2015) Dysprosium, holmium and erbium ions doped indium oxide nanotubes as photoanodes for dye sensitized solar cells and improved device performance. J Colloid Interf Sci 440:162–167

    Article  CAS  Google Scholar 

  17. Mahalingam S, Abdullah H, Ashaari I, Shaari S, Muchtar A (2015) Influence of heat treatment process in In2O3-MWCNTs as photoanode in DSSCs. Ionics 19:1–9

    Google Scholar 

  18. Kong L, Dai Q, Miao C, Xu L, Song H (2015) Doped In2O3 inverse opals as photoanode for dye sensitized solar cells. J Colloid Interf Sci 450:196–201

    Article  CAS  Google Scholar 

  19. Chen Y, Zhou X, Zhao X, He X, Gu X (2008) Crystallite structure, surface morphology and optical properties of In2O3-TiO2 composite thin films by sol-gel method. Mater Sci Eng B-Adv 151:179–186

    Article  CAS  Google Scholar 

  20. Abdullah H, Razali MZ, Shaari S, Taha MR (2014) Enhancement of dye-sensitized solar cell efficiency using carbon nanotube/TiO2 nanocomposite thin films fabricated at various annealing temperatures. Electron Mater Lett 10:611–619

    Article  CAS  Google Scholar 

  21. Liang SD, Huang NY, Deng SZ, Xu NS (2004) Chiral and quantum size effects of single-wall carbfson nanotubes on field emission. Appl Phys Lett 85:813–815

    Article  CAS  Google Scholar 

  22. Dresselhaus MS, Dresselhaus G, Eklund PC, Rao AM (2000) Carbon nanotubes. Springer Netherlands

  23. Tan H, Jiang LY, Huang Y, Liu B, Hwang KC (2007) The effect of van der Waals-based interface cohesive law on carbon nanotube-reinforced composite materials. Compos Sci Technol 67:2941–2946

    Article  CAS  Google Scholar 

  24. Georgakilas V, Kordatos K, Prato M, Guldi DM, Holzinger M, Hirsch A (2002) Organic functionalization of carbon nanotubes. J Am Chem Soc 124:760–761

    Article  CAS  Google Scholar 

  25. Lee W, Lee J, Lee H, Yi W, Han SH (2007) Enhanced charge-collection efficiency of In2S3/In2O3 photoelectrochemical cells in the presence of single-walled carbon nanotubes. Appl Phys Lett 91:043515–043515

    Article  Google Scholar 

  26. Chen PC, Shen G, Sukcharoenchoke S, Zhou C (2009) Flexible and transparent supercapacitor based on In2O3 nanowire/carbon nanotube heterogeneous films. Appl Phys Lett 94:043113. doi:10.1063/1.3069277

    Article  Google Scholar 

  27. Zeng GY, Nian KS, Lee KY (2010) Characteristics of a dye-sensitized solar cell based on an anode combining ZnO nanostructures with vertically aligned carbon nanotubes. Diam Relat Mater 19:1457–1460

    Article  CAS  Google Scholar 

  28. Du N, Zhang H, Chen BD, Ma XY, Liu ZH, Wu JB, Yang DR (2007) Porous indium oxide nanotubes: layer-by-layer assembly on carbon-nanotube templates and application for room-temperature NH3 gas sensors. Adv Mater 19:1641–1645

    Article  CAS  Google Scholar 

  29. McEuen PL, Michael SF, Park H (2002) Single-walled carbon nanotube electronics. IEEE Trans Nanotechnol 1:78–85

    Article  Google Scholar 

  30. Huang Y, Li D, Feng J, Li G, Zhang Q (2010) Transparent conductive tungsten-doped tin oxide thin films synthesized by sol-gel technique on quartz glass substrates. J Sol-Gel Sci Technol 54:276–281

    Article  CAS  Google Scholar 

  31. Jamal EMA, Kumar DS, Anantharaman MR (2011) On structural, optical and dielectric properties of zinc aluminate nanoparticles. Bull Mater Sci 34:251–259

    Article  Google Scholar 

  32. Liao L, Jc L, Wang DF, Liu C, Fu Q (2005) Electron field emission studies on ZnO nanowires. Mater Lett 59:2465–2467

    Article  CAS  Google Scholar 

  33. Tams C, Enjalbert N (2009) The use of UV/Vis/NIR spectroscopy in the development of photovoltaic cells. Elmer, Application Note Perkin

    Google Scholar 

  34. Du P, Song L, Xiong J, Li N, Wang L, Xi Z, et al. (2013) Dye-sensitized solar cells based on anatase TiO2/multi-walled carbon nanotubes composite nanofibers photoanode. Electrochima Acta 87:651–656

    Article  CAS  Google Scholar 

  35. Abdullah H, Omar A, Razali MZ, Yarmo MA (2014) Photovoltaic properties of ZnO photoanode incorporating with CNTs for dye-sensitized solar cell application. Ionics 20:1023–1030

    Article  CAS  Google Scholar 

  36. Beena D, Lethy KJ, Vinodkumar R, Detty AP, Mahadevan Pillai VP, Ganesan V (2010) Photoluminescence in laser ablated nanostructured indium oxide thin films. J Alloy Compd 489:215–223.

  37. Saad M, Khatijah S, Umar AA, Nafisah S, Salleh MM, Majlis BY (2013) Effect of TiO2 nanostructure’s shape on the DSSCs performance. InMicro and Nanoelectronics (RSM), IEEE Regional Symposium on 2013 Sep 25 pp 402–405 IEEE

  38. Samsuri SA, Rahman MY, Umar AA, Salleh MM (2015) Synthesis and characterization of TiO2-ZnO core-shell nanograss hetero-structure and its application in dye-sensitized solar cell (DSSC). J Mater Sci Mater Electron 26:4936–4943

    Article  CAS  Google Scholar 

  39. Naduvath J, Shaw S, Bhargava P, Mallick S (2014) Effect of nanograss and annealing temperature on TiO2 nanotubes based dye sensitized solar cells. In Materials Science Forum Feb 5 Vol. 771, pp 103–113

  40. Baglio V, Girolamo M, Antonucci V, Aricò AS (2011) Influence of TiO2 film thickness on the electrochemical behaviour of dye-sensitized solar cells. Int J Electrochem Sci 6:3375–3384

    CAS  Google Scholar 

  41. M.A. Bissett (2011) Carbon nanotubes for photovoltaic devices. PhD Dissertation, Flinders University

  42. Mahalingam S, Abdullah H, Ashaari I, Shaari S, Muchtar A (2016) Optical, morphology and electrical properties of In2O3 incorporating acid-treated single-walled carbon nanotubes based DSSC. J Phys D: Appl Phys 49:075601

    Article  Google Scholar 

  43. Wang W, Serp P, Kalck P, Faria JL (2005) Visible light photodegradation of phenol on MWNT-TiO2 composite catalysts prepared by a modified sol-gel method. J Mol Catal A-Chem 235:194–199

    Article  CAS  Google Scholar 

  44. Jitianu A, Cacciaguerra T, Benoit R, Delpeux S, Beguin F, Bonnamy S (2004) Synthesis and characterization of carbon nanotubes-TiO2 nanocomposites. Carbon 42:1147–1151

    Article  CAS  Google Scholar 

  45. Yu Y, Jimmy CY, Yu J-G, Kwok Y-K, Che Y-K, Zhao J-C, Ding L, Ge W-K, Wong P-K (2005) Enhancement of photocatalytic activity of mesoporous TiO2 by using carbon nanotubes. Appl Catal A-Gen 289:186–196

    Article  CAS  Google Scholar 

  46. Eguchi K, Koga H, Sekizawa K, Sasaki K (2000) Nb2O5-based composite electrodes for dye-sensitized solar cells. J Ceram Soc Jpn 108:1067–1071

    Article  CAS  Google Scholar 

  47. Thavasi V, Renugopalakrishnan V, Jose R, Ramakrishna S (2009) Controlled electron injection and transport at materials interfaces in dye-sensitized solar cells. Mater Sci Eng R Rep 63:81–99

    Article  Google Scholar 

  48. Fabregat-Santiago F, Bisquert J, Garcia Belmonte G, Boschlooand G, Hagfeldt A (2005) Influence of electrolyte in transport and recombination in dye-sensitized solar cells studied by impedance spectroscopy. Sol Energ Mat Sol C 87:117–131

    Article  CAS  Google Scholar 

  49. Fabregat-Santiago F, Bisquert J, Palomares E, Otero L, Kuang D, Zakeeruddin SM, Grätzel M (2007) Correlation between photovoltaic performance and impedance spectroscopy of dye-sensitized solar cells based on ionic liquids. J Phys Chem C 111:6550–6560

    Article  CAS  Google Scholar 

  50. Sun S, Gao L, Liu Y (2011) Optimization of the cutting process of multi-wall carbon nanotubes for enhanced dye-sensitized solar cells. Thin Solid Films 519:2273–2279

    Article  CAS  Google Scholar 

  51. Martinson ABF, Goes MS, Fabregat-Santiago F, Bisquert J, Pellin MJ, Hupp JT (2009) Electron transport in dye-sensitized solar cells based on ZnO nanotubes: evidence for highly efficient charge collection and exceptionally rapid dynamics. J Phys Chem 113:4015–4021

    Article  CAS  Google Scholar 

  52. Wang Q, Ito S, Grätzel M, Fabregat-Santiago F, Mora-Seró I, Bisquert J, Bessho T, Imai H (2006) Characteristics of high efficiency dye-sensitized solar cells. J Phys Chem B 110:25210–25221

    Article  CAS  Google Scholar 

  53. Omar A, Abdullah H (2014) Electron transport analysis in zinc oxide-based dye-sensitized solar cells: a review. Renew Sust Energ Rev 31:149–157

    Article  CAS  Google Scholar 

  54. Lee CH, Chiu WH, Lee KM, Yen WH, Lin HF, Hsieh WF, Wu JM (2010) The influence of tetrapod-like ZnO morphology and electrolytes on energy conversion efficiency of dye-sensitized solar cells. Electrochim Acta 55:8422–8429

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Exploratory Research Grants Scheme (ERGS/1/2013/TK07/UKM/03/2) and Photonic Technology Laboratory, Institute of Microengineering and Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Abdullah.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahalingam, S., Abdullah, H., Shaari, S. et al. Morphological and electron mobility studies in nanograss In2O3 DSSC incorporating multi-walled carbon nanotubes. Ionics 22, 1985–1997 (2016). https://doi.org/10.1007/s11581-016-1724-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-016-1724-z

Keywords

Navigation