Skip to main content
Log in

Fabrication of ordered porous silicon nanowires electrode modified with palladium-nickel nanoparticles and electrochemical characteristics in direct alkaline fuel cell of carbohydrates

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

A Pd-Ni nanoparticle modified silicon-based anode is fabricated and the possibility of using it for the direct alkaline fuel cell of carbohydrates has been investigated by electrochemical method. Upright and porous ordered silicon nanowires (SiNWs) arrays are prepared by wet etching. The Pd-Ni nanoparticles are covered to the SiNWs uniformly by chemical deposited successively. Using six kinds of common carbohydrate, including glucose, fructose, maltose, lactose, sucrose, and starch, as testing subjects, the performance of electrocatalytic oxidation is studied. Experiment results show that the electrochemically active surface area of Pd-Ni/SiNWs electrode electrochemically active surface area is 53.482 cm2, and higher electrocatalytic activity and stability is displayed for the direct oxidation of glucose, fructose, maltose, and lactose. Firstly, the Pd-Ni/SiNWs electrode has better electrochemical performance for carbohydrates and is promising for applications in direct alkaline fuel. Secondly, more kinds of carbohydrates might potentially use as energy source for direct alkaline fuel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Nguyen ST, Lee J, Yang Y, Wang X (2012) Excellent durability of substoichiometric titanium oxide as a catalyst support for Pd in alkaline direct ethanol fuel cells. Ind Eng Chem Res 51:9966–9972

    Article  CAS  Google Scholar 

  2. Serov A, Kwak C (2009) Progress in development of direct dimethyl ether fuel cells. Appl Catal B-Environ 91:1–10

    Article  CAS  Google Scholar 

  3. Kannan R, Kim AR, Nahm KS, Lee HK, Yoo DJ (2014) Synchronized synthesis of Pd@C-RGO carbocatalyst for improved anode and cathode performance for direct ethylene glycol fuel cell. Chem Commun (Camb) 50:14623–14626

    Article  CAS  Google Scholar 

  4. Yu EH, Wang X, Krewer U, Li L, Scott K (2012) Direct oxidation alkaline fuel cells: from materials to systems. Energ Environ Sci 5:5668–5680

    Article  CAS  Google Scholar 

  5. Liang JS, Liu KY, Li SZ, Wang DZ, Ren TQ, Xu XY, Luo Y (2015) Novel flow field with superhydrophobic gas channels prepared by one-step solvent-induced crystallization for micro direct methanol fuel cell. Nano-Micro Letters 7:165–171

    Article  Google Scholar 

  6. Liu H, Feng Y, Cao HB, Yang J (2014) Pt-containing Ag2S-noble metal nanocomposites as highly active electrocatalysts for the oxidation of formic acid. Nano-Micro Lett 6:252–257

    Article  Google Scholar 

  7. Liu S, Guo XF (2012) Carbon nanomaterials field-effect-transistor-based biosensors. NPG Asia Mater 4:e23

    Article  Google Scholar 

  8. Yu CF, Ma PP, Zhou X, Wang AQ, Qian T, Wu SS, Chen Q (2014) All-solid-state flexible supercapacitors based on highly dispersed polypyrrole nanowire and reduced graphene oxide composites. Acs Appl Mater Inter 6:17937–17943

    Article  CAS  Google Scholar 

  9. Song J, Jung MG, Park HW, Lim H (2013) The effect of fabrication conditions for GDC buffer layer on electrochemical performance of solid oxide fuel cells. Nano-Micro Lett 5:151–158

    Article  Google Scholar 

  10. Yi QF, Niu FJ, Yu WQ (2011) Pd-modified TiO2 electrode for electrochemical oxidation of hydrazine, formaldehyde and glucose. Thin Solid Films 519:3155–3161

    Article  CAS  Google Scholar 

  11. Arico AS, Bruce P, Scrosati B (2005) Nanostructured materials for advanced energy conversion and storage devices. Nat Mater 4:366–377

    Article  CAS  Google Scholar 

  12. Ghosh S, Sood AK, Kumar N (2003) Carbon nanotube flow sensors. Science 299:1042–1044

    Article  CAS  Google Scholar 

  13. Liu N, Yao Y, Cha JJ, McDowell MT, Han Y, Cui Y (2012) Functionalization of silicon nanowire surfaces with metal-organic frameworks. Nano Res 5:109–116

    Article  Google Scholar 

  14. Lim CT (2013) Progress in materials science. Prog Mater Sci 58:705–748

    Article  Google Scholar 

  15. Yin JJ, Qi X, Yang LW, Hao GL, Li J, Zhong JX (2011) A hydrogen peroxide electrochemical sensor based on silver nanoparticles decorated silicon nanowire arrays. Electrochim Acta 56:3884–3889

    Article  CAS  Google Scholar 

  16. Wang FX, Shao MW, Cheng L, Chen DY, Fu Y, Ma DDD (2009) Si/Pd nanostructure with high catalytic activity in degradation of eosin Y. Mater Res Bull 44:126–129

    Article  CAS  Google Scholar 

  17. Kwon DH, An HH, Kim H, Lee JH, Suh SH, Kim YH, Yoon CS (2011) Electrochemical albumin sensing based on silicon nanowires modified by gold nanoparticles. Appl Surf Sci 257:4650–4654

    Article  CAS  Google Scholar 

  18. Tao BR, Zhang J, Hui SC, Chen XJ, Wan LJ (2010) An electrochemical methanol sensor based on a Pd–Ni/SiNWs catalytic electrode. Electrochim Acta 55:5019–5023

    Article  CAS  Google Scholar 

  19. Lian SY, Tsang CHA, Kang ZH, Liu Y, Wong N, Lee S (2011) Hydrogen-terminated silicon nanowire photocatalysis: benzene oxidation and methyl red decomposition. Mater Res Bull 46:2441–2444

    Article  CAS  Google Scholar 

  20. Jiang TT, Yan LL, Meng YZ, Xiao M, Wu ZR, Tsiakaras P, Song SQ (2015) Glucose electrooxidation in alkaline medium: performance enhancement of PdAu/C synthesized by NH3 modified pulse microwave assisted polyol method. Appl Catal B-Environ 162:275–281

    Article  CAS  Google Scholar 

  21. Antolini E, Gonzalez ER (2010) Alkaline direct alcohol fuel cells. J Power Sources 195:3431–3450

    Article  CAS  Google Scholar 

  22. Brouzgou A, Podias A, Tsiakaras P (2013) PEMFCs and AEMFCs directly fed with ethanol: a current status comparative review. J Appl Electrochem 43:119–136

    Article  CAS  Google Scholar 

  23. Zhiani M, Rostami H, Majidi S, Karami K (2013) Bis (dibenzylidene acetone) palladium (0) catalyst for glycerol oxidation in half cell and in alkaline direct glycerol fuel cell. Int J Hydrogen Energ 38:5435–5441

    Article  CAS  Google Scholar 

  24. Xu JB, Zhao TS, Li YS, Yang WW (2010) Synthesis and characterization of the Au-modified Pd cathode catalyst for alkaline direct ethanol fuel cells. Int J Hydrogen Energ 35:9693–9700

    Article  CAS  Google Scholar 

  25. Xu CW, Cheng LQ, Shen PK, Liu YL (2007) Methanol and ethanol electrooxidation on Pt and Pd supported on carbon microspheres in alkaline media. Electrochem Commun 9:997–1001

    Article  CAS  Google Scholar 

  26. Brouzgou A, Yan LL, Song SQ, Tsiakaras P (2014) Glucose electrooxidation over PdxRh/C electrocatalysts in alkaline medium. Appl Catal B-Environ 147:481–489

    Article  CAS  Google Scholar 

  27. Brouzgou A, Song S, Tsiakaras P (2014) Carbon-supported PdSn and Pd3Sn2 anodes for glucose electrooxidation in alkaline media. Appl Catal B-Environ 158:209–216

    Article  Google Scholar 

  28. Shirahata N, Masuda Y, Yonezawa T, Koumoto K (2004) Atomic scale flattening of organosilane self-assembled monolayer and patterned tin hydroxide thin films. J Eur Ceram Soc 24:427–434

    Article  CAS  Google Scholar 

  29. Ulman A (1996) Formation and structure of self-assembled monolayers. Chem Rev 96:1533–1554

    Article  CAS  Google Scholar 

  30. Wan LJ, Gong WL, Jiang KW, Li HL, Tao BR, Zhang J (2008) Preparation and surface modification of silicon nanowires under normal conditions. Appl Surf Sci 254:4899–4907

    Article  CAS  Google Scholar 

  31. Zhang ML, Peng KQ, Fan X, Jie JS, Zhang RQ, Lee ST, Wong NB (2008) Preparation of large-area uniform silicon nanowires arrays through metal-assisted chemical etching. J Phys Chem C 112:4444–4450

    Article  CAS  Google Scholar 

  32. Song Y, Gao Z, Kelly JJ, Xia X (2005) Galvanic deposition of nanostructured noble-metal films on silicon. Electrochem Solid St 8:C148

    Article  CAS  Google Scholar 

  33. Tao BR, Zhang J, Miao FJ, Li HL, Wan LJ, Wang YT (2009) Capacitive humidity sensors based on Ni/SiNWs nanocomposites. Sens Actuators B: Chemical 136:144–150

    Article  CAS  Google Scholar 

  34. Bhaskaran M, Sriram S, Sim LW (2008) Nickel silicide thin films as masking and structural layers for silicon bulk micro-machining by potassium hydroxide wet etching. J Micromech Microeng 18:095002

    Article  Google Scholar 

  35. Jiang L, Hsu A, Chu D (2009) Size-dependent activity of palladium nanoparticles for oxygen electroreduction in alkaline solutions. J Electrochem Soc 156:B643–B649

    Article  CAS  Google Scholar 

  36. Dector A, Cuevas-Muñiz FM, Guerra-Balcázar M, Godínez LA, Ledesma-García J, Arriaga LG (2013) Glycerol oxidation in a microfluidic fuel cell using Pd/C and Pd/MWCNT anodes electrodes. Int J Hydrogen Energ 38:12617–12622

    Article  CAS  Google Scholar 

  37. Liang R, Hu AM, Persic J, Zhou YN (2013) Palladium nanoparticles loaded on carbon modified TiO2 nanobelts for enhanced methanol electrooxidation. Nano-Micro Lett 5:202–212

    Article  CAS  Google Scholar 

  38. Behmenyar G, Akın AN (2014) Investigation of carbon supported Pd-Cu nanoparticles as anode catalysts for direct borohydride fuel cell. J Power Sources 249:239–246

    Article  CAS  Google Scholar 

  39. Zhao YC, Yang XL, Tian JN, Wang FY, Zhan L (2010) Methanol electro-oxidation on Ni@Pd core-shell nanoparticles supported on multi-walled carbon nanotubes in alkaline media. Int J Hydrogen Energ 35:3249–3257

    Article  CAS  Google Scholar 

  40. Seo MH, Choi SM, Kim HJ, Kim WB (2011) The graphene-supported Pd and Pt catalysts for highly active oxygen reduction reaction in an alkaline condition. Electrochem Commun 13:182–185

    Article  CAS  Google Scholar 

  41. Topper YJ, Stetten DW (1951) The alkali-catalyzed conversion of glucose into fructose and mannose. J Biol Chem 189:191–202

    CAS  Google Scholar 

  42. Nath N, Singh MP (1965) Mechanism of the oxidation of reducing sugars (hexoses) by hexacyanoferrate (III) in alkaline medium and Lobry de Bruyn transformation. J Phys Chem 69:2038–2043

    Article  CAS  Google Scholar 

  43. Sowden JC, Blair MG, Kuenne DJ (1957) The isomerization of C14-labeled sugars to saccharinic acids. J Am Chem Soc 79:6450–6454

    Article  CAS  Google Scholar 

  44. Gallezot P (1997) Selective oxidation with air on metal catalysts. Catal Today 37:405–418

    Article  CAS  Google Scholar 

  45. Basu D, Basu S (2010) A study on direct glucose and fructose alkaline fuel cell. Electrochim Acta 55:5775–5779

    Article  CAS  Google Scholar 

  46. Hendriks HE, Kuster BF, Marin GB (1990) The effect of bismuth on the selective oxidation of lactose on supported palladium catalysts. Carbohyd Res 204:121–129

    Article  CAS  Google Scholar 

  47. Tokarev AV, Murzina EV, Seelam PK, Kumar N, Murzin DY (2008) Influence of surface acidity in lactose oxidation over supported Pd catalysts. Micropor Mesopor Mat 113:122–131

    Article  CAS  Google Scholar 

  48. Evans WL, Benoy MP (1930) The mechanism of carbohydrate oxidation. Xi. The action of potassium hydroxide on maltose. J Am Chem Soc 52:294–307

    Article  CAS  Google Scholar 

  49. Corbett WM, Kenner J (1954) The degradation of carbohydrates by alkali. Part IX. Cellobiose, cellobiulose, cellotetraose, and laminarin. Journal of the Chemical Society (Resumed):1789–1791

  50. Hendriks HEJ, Kuster BFM, Marin GB (1994) Global kinetics of the alkaline oxidative degradations of lactose. J Mol Cata 93:317–335

    Article  CAS  Google Scholar 

  51. van den Berg R, Peters JA, van Bekkum H (1995) Selective alkaline oxidative degradation of mono-and di-saccharides by hydrogen peroxide using borate as catalyst and protecting group. Carbohyd Res 267:65–77

    Article  Google Scholar 

  52. Liang ZX, Zhao TS, J.B X, Zhu LD (2009) Mechanism study of the ethanol oxidation reaction on palladium in alkaline media. Electrochim Acta 54:2203–2208

    Article  CAS  Google Scholar 

  53. An L, Zeng L, Zhao TS (2013) An alkaline direct ethylene glycol fuel cell with an alkali-doped polybenzimidazole membrane. Int J Hydrogen Energ 38:10602–10606

    Article  CAS  Google Scholar 

  54. Kung C, Lin C, Lai Y, Vittal R, Ho K (2011) Cobalt oxide acicular nanorods with high sensitivity for the non-enzymatic detection of glucose. Biosens Bioelectron 27:125–131

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was jointly supported by the National Natural Science Foundation of China (Grant No. 61204127, 81172204, 81271628), Natural Science Foundation of Heilongjiang Province (Grant Nos. F201332 and F201438), and City University of Hong Kong Applied Research Grant (ARG) No. 9667085.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bairui Tao or Fengjuan Miao.

Additional information

Bairui Tao and Keyang Zhao are common first authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tao, B., Zhao, K., Miao, F. et al. Fabrication of ordered porous silicon nanowires electrode modified with palladium-nickel nanoparticles and electrochemical characteristics in direct alkaline fuel cell of carbohydrates. Ionics 22, 1891–1898 (2016). https://doi.org/10.1007/s11581-016-1717-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-016-1717-y

Keywords

Navigation