Skip to main content

Advertisement

Log in

Efficiency of supercapacitor using EC/DMC-based liquid electrolytes with methyl methacrylate (MMA) monomer

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

A liquid electrolyte based on binary solvent systems of ethylene carbonate (EC), dimethyl carbonate (DMC) and lithium bis(trifluoromethane)sulfonimide (LiTFSI) incorporated with methyl methacrylate (MMA) monomer is synthesized. The ionic conductivity (σ) ∼2.16 × 10−3 S cm−1 at room temperature is found for the 0.058 mol kg−1 of LiTFSI. Viscosity measurements are carried out within temperature ranges 25–40 °C. The activation energy E a of the flow process (viscous flow) is calculated using Arrhenius equation. Structural properties of the liquid electrolyte are studied using Fourier transform infrared (FTIR) spectroscopy. Electrochemical supercapacitors are then assembled using the liquid electrolyte and activated carbons as electrode materials. The electrochemical properties of the supercapacitors are investigated using cyclic voltammetry, cyclic charge-discharge and electrochemical impedance spectroscopy techniques. It is found that the supercapacitors exhibited specific capacitance ∼46.5 F g−1 at 10 mV s−1. The long cycling stability of the supercapacitor containing monomer-based liquid electrolyte confirms the electrochemical stability of the electrolyte.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Liew CW, Ramesh S, Arof AK (2015) Characterization of ionic liquid added poly(vinyl alcohol)-based proton conducting polymer electrolytes and electrochemical studies on the supercapacitors. Int J Hydrog Energy 40:852–862

    Article  CAS  Google Scholar 

  2. Conway BE (1999) Electrochemical supercapacitors: scientific fundamentals and technological applications. Kluwer Academic Plenum, New York

    Book  Google Scholar 

  3. Wang G, Zhang L, Zhang J (2012) A review of electrode materials for electrochemical supercapacitors. Chem Soc Rev 41:797–828

    Article  CAS  Google Scholar 

  4. Simon P, Gogotsi Y (2008) Materials for electrochemical capacitors. Nat Mater 7:845–854

    Article  CAS  Google Scholar 

  5. Kotz R, Carlen M (2000) Principles and applications of electrochemical capacitors. Electrochim Acta 45:2483–2498

    Article  CAS  Google Scholar 

  6. Snook GA, Kao P, Best AS (2011) Conducting-polymer-based supercapacitor devices and electrodes. J Power Sources 196:1–12

    Article  CAS  Google Scholar 

  7. Brousse T, Toupin M, Dugas R, Athouel L, Crosnier O, Belanger D (2006) Crystalline MnO2 as possible alternatives to amorphous compounds in electrochemical supercapacitors. J Electrochem Soc 153:A2171–A2180

    Article  CAS  Google Scholar 

  8. Gupta V, Kusahara T, Toyama H, Gupta S, Miura N (2007) Potentiostatically deposited nanostructured α-Co(OH)2: a high performance electrode material for redox-capacitors. Electrochem Commun 9:2315–2319

    Article  CAS  Google Scholar 

  9. Qu D, Shi H (2008) Studies of activated carbons used in double-layer capacitors. J Power Sources 74:99–107

    Article  Google Scholar 

  10. Pandey GP, Hashmi SA, Kumar Y (2010) Multi-walled carbon nanotube electrodes for electrical double layer capacitors with ionic liquid based gel polymer electrolytes. J Electrochem Soc 157:A105–A114

    Article  CAS  Google Scholar 

  11. Pandey GP, Hashmi SA (2013) Solid-state supercapacitors with ionic liquid based gel polymer electrolyte: effect of lithium salt addition. J Power Sources 243:211–218

    Article  CAS  Google Scholar 

  12. Gores HJ, Barthel JMG (1995) Nonaqueous electrolyte solutions: new materials for devices and processes based on recent applied research. Pure Appl Chem 67:919–930

    Article  CAS  Google Scholar 

  13. Jun HK, Buraidah MH, Noor MM, Kufian MZ, Majid SR, Sahraoui B, Arof AK (2013) Application of LiBOB-based liquid electrolyte in co-sensitized solar cell. Opt Mater 36:151–158

    Article  CAS  Google Scholar 

  14. Wang Y, Hong Z, Wei M, Xia Y (2012) Nanowires: a new promising pseudocapacitive material in non-aqueous electrolyte. Adv Funct Mater 22:5185–5193

    Article  CAS  Google Scholar 

  15. Li F, Zhang T, Zhou H (2013) Challenges of non-aqueous Li-O2 batteries: electrolytes, catalysts, and anodes. Energy Environ Sci 6:1125–1141

    Article  CAS  Google Scholar 

  16. Sheng S, Xu K, Read J (2011) a non-aqueous electrolyte for the operation of Li/air battery in ambient environment. J Power Sources 196:3906–3910

    Article  Google Scholar 

  17. Aravindan V, Shubha N, Ling WC, Madhavi S (2013) Constructing high energy density non-aqueous Li-ion capacitors using monoclinic TiO2-B nanorods as insertion host. J Mater Chem A 1:6145–6151

    Article  CAS  Google Scholar 

  18. Xu K (2004) Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem Rev 104:4303–4418

    Article  CAS  Google Scholar 

  19. Idris NH, Rahman MM, Wang JZ, Liu HK (2012) Microporous gel polymer electrolytes for lithium rechargeable battery application. J Power Sources 201:294–300

    Article  CAS  Google Scholar 

  20. Jayathilake YMCD, Perera KS, Vidanapathirana KP, Bandara LRKA (2014) Ionic conductivity of a PMMA based gel polymer electrolyte and its performance in solid state electrochemical cells. S L J Phys 15:11–17

    Google Scholar 

  21. Youssef AM (2013) Polymer nanocomposites as a new trend for packaging applications. Polym Plast Technol Eng 52:635–660

    Article  CAS  Google Scholar 

  22. Gutierrez MP, Zohdi TI (2014) Effective reflectivity and heat generation in sucrose and PMMA mixtures. Energy Build 71:95–103

    Article  Google Scholar 

  23. Liebermann A, Keul C, Bahr N, Edelhoff D, Eichberger M, Roos M, Stawarczyk B (2013) Impact of plasma treatment of PMMA-based CAD/CAM blanks on surface properties as well as on adhesion to self-adhesive resin composite cements. Dent Mater 29:935–944

    Article  CAS  Google Scholar 

  24. Shimizu K, Malmos K, Holm AH, Pedersen SU, Daasbjerg K, Hinge M (2014) Improved adhesion between PMMA and stainless steel modified with PMMA brushes. ACS Appl Mater Interfaces 6:21308–21315

    Article  CAS  Google Scholar 

  25. Stamenkovic JV, Premovic PI, Mentus SV (1997) Electrical conductivity of poly(acrylic acid) gels. J Serb Chem Soc 62:945–950

    CAS  Google Scholar 

  26. Sharma JP, Sekhon SS (2007) Nano-dispersed polymer gel electrolytes: conductivity modification with the addition of PMMA and fumed silica. Solid State Ionics 178:439–445

    Article  CAS  Google Scholar 

  27. Ramesh S, Shanti R, Durairaj R (2011) Effect of ethylene carbonate in poly (methyl methacrylate)-lithium tetraborate based polymer electrolytes. J Non-Cryst Solids 357:1357–1363

    Article  CAS  Google Scholar 

  28. Dahbi M, Ghamouss F, Tran-Van F, Lemordant D, Anouti M (2011) Comparative study of EC/DMC LiTFSI and LiPF6 electrolytes for electrochemical storage. J Power Sources 196:9743–9750

    Article  CAS  Google Scholar 

  29. Chandola M, Marathe S (2008) A QSPR for the plasticization efficiency of polyvinylchloride plasticizers. J Mol Graph Model 26:824–828

    Article  CAS  Google Scholar 

Download references

Acknowledgments

All authors acknowledge the University of Malaya Research Grant (UMRG: RP001A-13AFR and RP025A-14AFR) and the High Impact Research Grant (H-21001-F000046) from Ministry of Education, Malaysia. One of author, Y. K. Mahipal, would like to extend his gratitude to the IPPP, University of Malaya, Kuala Lumpur (Malaysia) for the award of Post-Doctoral Research Fellowship (Sanction No. UM.TNC2/IPPP/FPPD/221/dt. December 3, 2013). One of the authors, N. S. Nadiah, would also like to thank the University of Malaya for the IPPP Grant No. PG050-2013B.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Ramesh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nadiah, N.S., Mahipal, Y.K., Numan, A. et al. Efficiency of supercapacitor using EC/DMC-based liquid electrolytes with methyl methacrylate (MMA) monomer. Ionics 22, 107–114 (2016). https://doi.org/10.1007/s11581-015-1523-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-015-1523-y

Keywords

Navigation