Skip to main content
Log in

Synthesis of 1-[3-(N-pyrrole)propyl]-3-[1-tert-butoxycarbonylamino-propyl]-imidazolium tetrafluoroborate ionic liquid for application in electrochemical sensing of magnolol

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

1-[3-(N-Pyrrole)propyl]-3-[1-tert-butoxy-carbonylamino-propyl]imidazolium tetrafluoroborate ionic liquid was successfully synthesized and characterized. The ionic liquid was electrochemically polymerized onto a glassy carbon electrode surface using a multi-potential step technique. Morphology and electrochemical properties of the polymerized ionic liquid film electrode were studied with scanning electronic microscopy and electrochemical impedance spectroscopy. Using the polymerized ionic liquid film as a sensing platform, electrochemical behaviors of magnolol were investigated by voltammetry. Under optimal experimental conditions, the oxidation peak currents were linearly related to magnolol concentrations in the range from 5.0 × 10−8 to 1.0 × 10−5 mol L−1. The detection limit calculated from the standard deviation of the intercept was 2.3 × 10−7 mol L−1. Practical application of the polymerized ionic liquid film electrode was demonstrated by determining magnolol in the traditional Chinese medicine. The result is consistent with that obtained using high performance liquid chromatography.

Polymerized ionic liquid film electrode fabricated with potential step technique and application in voltammetric sensing of magnolol

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Hantao LW, Najafi A, Zhang C, Augusto F, Anderson JL (2014) Tuning the selectivity of ionic liquid stationary phases for enhanced separation of nonpolar analytes in kerosene using multidimensional gas chromatography. Anal Chem 86:3717–3721

    Article  CAS  Google Scholar 

  2. Alammar T, Noei H, Wang YM, Mudring AV (2013) Mild yet phase-selective preparation of TiO2 nanoparticles from ionic liquids—a critical study. Nanoscale 5:8045–8055

    Article  CAS  Google Scholar 

  3. Fan YC, Zhang SL, Yang FM, Niu HB, Shi JJ (2012) Extraction behavior of copper(II) ion with a hydrophobic amino-functionalized ionic liquid. Microchim Acta 177:237–243

    Article  CAS  Google Scholar 

  4. Chen Y, Xiong HY, Zhang XH, Wang SF (2012) Electrochemical detection of in situ DNA damage induced by enzyme-catalyzed Fenton reaction. part II in hydrophobic room temperature ionic liquid. Microchim Acta 178:45–51

    Article  CAS  Google Scholar 

  5. Gupta VK, Sadeghi R, Karimi F (2013) A novel electrochemical sensor based on ZnO nanoparticle and ionic liquid binder for square wave voltammetric determination of droxidopa in pharmaceutical and urine samples. Sens Actuat B: Chem 186:603–609

    Article  CAS  Google Scholar 

  6. Li XY, Liu YX, Zheng LC, Dong MJ, Xue ZH, Lu XQ, Liu XH (2013) A novel nonenzymatic hydrogen peroxide sensor based on silver nanoparticles and ionic liquidfunctionalized multiwalled carbon nanotube composite modified electrode. Electrochim Acta 113:170–175

    Article  CAS  Google Scholar 

  7. Washiro S, Yoshizawa M, Nakajima H, Ohno H (2004) Highly ion conductive flexible films composed of network polymers based on polymerizable ionic liquids. Polymer 45:1577–1582

    Article  CAS  Google Scholar 

  8. Chang JL, Wei GT, Zen JM (2011) Screen-printed ionic liquid/preanodized carbon electrode: effective detection of dopamine in the presence of high concentration of ascorbic acid. Electrochem Commun 13:174–177

    Article  CAS  Google Scholar 

  9. Ohno H, Ito K (1998) Room-temperature molten salt polymers as a matrix for fast ion conduction. Chem Lett 8:751–752

    Article  Google Scholar 

  10. Hirao M, Ito K, Ohno H (2000) Preparation and polymerization of new organic molten salts; N-alkylimidazolium salt derivatives. Electrochim Acta 45:1291–1294

    Article  CAS  Google Scholar 

  11. Nakamura K, Saiwaki T, Fukao K (2010) Dielectric relaxation behavior of polymerized ionic liquid. Macromolecules 43:6092–6098

    Article  CAS  Google Scholar 

  12. Tang J B, Tang H D, Sun W L, Plancher H, Radosz M, Shen Y Q (2005) Poly(ionic liquid)s: a new material with enhanced and fast CO2 absorption. Chem Commun 3325–3327. doi:10.1039/b501940k

  13. Nakashima T, Kawai T (2005) Quantum dots–ionic liquid hybrids: efficient extraction of cationic CdTe nanocrystals into an ionic liquid. Chem Commun 1643–1645. doi:10.1039/B418001A

  14. Zhang WX, Li Y, Lin C, An Q, Tao CG, Gao YB, Li GT (2008) Electrochemical polymerization of imidazolum-ionic liquids bearing a pyrrole moiety. J Polym Sci: Pol Chem 46:4151–4161

    Article  CAS  Google Scholar 

  15. Lagoutte S, Aubert PH, Tran-Van F, Sallenave X, Laffaiteur C, Sarrazin C, Chevrot C (2013) Electrochemical and optical properties of poly(3,4-dimethylthiophene) and its copolymers with 3-methylthiophenein ionic liquids media. Electrochim Acta 106:13–22

    Article  CAS  Google Scholar 

  16. Kannan B, Williams DE, Laslau C, Travas-Sejdic J (2012) The electrochemical growth of highly conductive single PEDOT (conducting polymer): BMIPF6 (ionic liquid) nanowires. J Mater Chem 22:18132–18135

    Article  CAS  Google Scholar 

  17. Deepa M, Ahmad S (2008) Polypyrrole films electropolymerized from ionic liquids and in a traditional liquid electrolyte: a comparison of morphology and electro–optical properties. Eur Poly J 44:3288–3299

    Article  CAS  Google Scholar 

  18. Wang ZG, Wang P, Tu XJ, Wu YY, Zhan GQ, Li CY (2014) A novel electrochemical sensor for estradiol based on nanoporous polymeric film bearing poly{1-butyl-3-[3-(N-pyrrole)propyl]imidazole dodecyl sulfonate} moiety. Sens Actuat B: Chem 193:190–197

    Article  CAS  Google Scholar 

  19. Ogata M, Hoshi M, Shimotohno K, Urano K, Endo T (1997) Antioxidant activity of magnolol, honokiol, and related phenolic compounds. J Am Oil Chem Soc 74:557–562

    Article  CAS  Google Scholar 

  20. Ikeda K, Sakai Y, Nagase H (2003) Inhibitory effect of magnolol on tumour metastasis in mice. Phytother Res 17:933–937

    Article  CAS  Google Scholar 

  21. Ho KY, Tsai CC, Chen CP, Huang JS, Lin CC (2001) Antimicrobial activity of honokiol and magnolol isolated from Magnolia officinalis. Phytother Res 15:139–141

    Article  CAS  Google Scholar 

  22. Wu YT, Lin LC, Tsai TH (2006) Simultaneous determination of honokiol and magnolol in Magnolia officinalis by liquid chromatography with tandem mass spectrometric detection. Biomed Chromatogr 20:1076–1081

    Article  CAS  Google Scholar 

  23. Chen CL, Chang PL, Lee SS, Peng FC, Kuo CH, Chang HT (2007) Analysis of magnolol and honokiol in biological fluids by capillary zone electrophoresis. J Chromatogr A 1142:240–244

    Article  CAS  Google Scholar 

  24. Higashi Y, Liu J, Fujii Y (2012) High-performance loquid chromatography coupled with fluorescence detection for simultaneous determination of honokiol and magnolol in Hange-koboku-to dried extract granules. J Liq Chromatogr R T 35:321–330

    Article  CAS  Google Scholar 

  25. Huang WS, Gan T, Luo SJ, Zhang SH (2013) Sensitive and selective electrochemical sensor for magnolol based on the enhancement effect of multiwalled carbon nanotubes. Ionics 19:1303–1307

    Article  CAS  Google Scholar 

  26. Yang XF, Gao MM, Hu HD, Zhang HJ (2011) Electrochemical detection of honokiol and magnolol in traditional Chinese medicines using acetylene black nanoparticle-modified electrode. Phytochem Anal 22:291–295

    Article  CAS  Google Scholar 

  27. Zhao J, Huang WS, Zheng XJ (2009) Mesoporous silica-based electrochemical sensor for simultaneous determination of honokiol and magnolol. J Appl Electrochem 39:2415–2419

    Article  CAS  Google Scholar 

  28. Liu T, Zheng XJ, Huang WS, Wu KB (2008) Voltammetric detection of magnolol in Chinese medicine based on the enhancement effect of mesoporous Al/SiO2-modified electrode. Colloid Surf B 65:226–229

    Article  CAS  Google Scholar 

  29. Zhao J, Yan F, Chen ZZ, Diao HB, Chu FQ, Yu SM, Lu JM (2009) Microemulsion polymerization of Cationic pyrroles bearing an imidazolum-ionic liquid moiety. J Polym Sci: Pol Chem 47:746–753

    Article  CAS  Google Scholar 

  30. Chen G, Xu XJ, Zhu YZ, Zhang LY, Yang PY (2006) Determination of honokiol and magnolol in Cortex Magnoliae Officinalis by capillary electrophoresis with electrochemical detection. J Pharmaceut Biomed Anal 41:1479–1484

    Article  CAS  Google Scholar 

  31. Bard AJ, Faulkner LR (1980) Electrochemical methods fundamentals and applications. Wiley, New York

    Google Scholar 

  32. Ferreira M, Varela H, Torresi RM, Tremiliosi-Filho G (2006) Electrode passivation caused by polymerization of different phenolic compounds. Electrochim Acta 52:434–442

    Article  CAS  Google Scholar 

  33. Laviron E (1974) Adsorption, autoinhibition and autocatalysis in polarography and in linear potential sweep voltammetry. J Electroanal Chem 52:355–393

    Article  CAS  Google Scholar 

  34. Kuramitz H, Matsushita M, Tanaka S (2004) Electrochemical removal of bisphenol A based on the anodic polymerization using a column type carbon fiber electrode. Water Res 38:2331–2338

    Article  CAS  Google Scholar 

  35. Eickhoff H, Jung G, Rieker A (2001) Oxidative phenol coupling-tyrosine dimers and libraries containing tyrosyl peptide dimers. Tetrahedron 57:353–364

    Article  CAS  Google Scholar 

  36. Rieker A, Beisswenger R, Regier K (1991) Syntheses via anodically produced phenoxenium ions. applications in the field of peptides and carbohydrates. Tetrahedron 47:645–654

    Article  CAS  Google Scholar 

  37. Li C, Hoffman MZ (1999) One-electron redox potentials of phenols in aqueous solution. J Phys Chem B 103:6653–6656

    Article  CAS  Google Scholar 

  38. Wang X, Yang LJ, Jin XD, Zhang L (2014) Electrochemical determination of estrogenic compound bisphenol F in food packaging using carboxyl functionalized multi-walled carbon nanotubes modified glassy carbon electrode. Food Chem 157:464–469

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial supports from National Natural Science Foundation of China (no. 21275166), China Scholarship Council (No. 201307780006), and Research foundation of General Administration of Quality Supervision, Inspection, and Quarantine of the People’s Republic of China (no. 2013Qk286).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunya Li.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 4.27 MB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, G., Ma, Y., Hou, X. et al. Synthesis of 1-[3-(N-pyrrole)propyl]-3-[1-tert-butoxycarbonylamino-propyl]-imidazolium tetrafluoroborate ionic liquid for application in electrochemical sensing of magnolol. Ionics 21, 2567–2574 (2015). https://doi.org/10.1007/s11581-015-1455-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-015-1455-6

Keywords

Navigation