Skip to main content

Advertisement

Log in

NiO hybrid nanoarchitecture-based pseudocapacitor in organic electrolyte with high rate capability and cycle life

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

A 3D hierarchical NiO nanostructures with combined microstructure of nanoflakes and nanoflowers have been fabricated on carbon fibre cloth (CFC). Unique nano-micro structural features of NiO/CFC electrode showed an enhanced electrochemical activity in organic electrolyte (1 M tetraethylammonium tetrafluorborate (TEABF4) in propylene carbonate) in terms of rate capability, specific energy and power performance as well as potential limit. The electrode showed a specific capacitance of 170 Fg−1 for a current density of 5 Ag−1. Configured as a two-electrode symmetric supercapacitor, the device showed a specific capacitance of 34.9 Fg−1 at 1 Ag−1 current density. It delivered a maximum specific energy density of 19.4 Wh kg−1 at a high power density of 1002.8 W kg−1 at a constant current density of 1 Ag−1. The cell is also capable of long-term cycling stability with an efficiency of 58 % after 25,000 cycles with a potential window of 0 to ±2 V. This superior electrochemical activity of the NiO electrode is due to their structural benefits of well-connected hybrid nano/mesoporous structure and rapid ion intercalation within the porous electrode surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Winter M, Brodd RJ (2004) Chem Rev 104:4245–4269

    Article  CAS  Google Scholar 

  2. Simon P, Gogotsi Y (2008) Nat Mater 7:845–854

    Article  CAS  Google Scholar 

  3. Miller JR, Simon P (2008) Science 321:651–652

    Article  CAS  Google Scholar 

  4. Osiak M, Geaney H, Armstrong E, O’Dwyer C (2014) J Mater Chem A 2:9433–9460

    Article  CAS  Google Scholar 

  5. Li HB, Yu MH, Wang FX, Liu P, Liang Y, Xiao J, Wang CX, Tong YX, Yang G (2013) Nat Commun 4:18904

    Google Scholar 

  6. Brezesinski T, Wang J, Tolbert SH, Dunn B (2010) Nat Mater 9:146–151

    Article  CAS  Google Scholar 

  7. Toupin M, Brousse T, Belanger D (2004) Chem Mater 16:3184–3190

    Article  CAS  Google Scholar 

  8. Long JW, Dunn B, Rolison DR, White HS (2004) Chem Rev 104:4463–4492

    Article  CAS  Google Scholar 

  9. Wang J, Polleux J, Lim J, Dunn B (2007) J Phys Chem C 111:14925–14931

    Article  CAS  Google Scholar 

  10. Xiang Y, Lu S, Jiang SP (2012) Chem Soc Rev 41:7291–7321

    Article  CAS  Google Scholar 

  11. Gao Y, Zhou YS, Xiong W, Jiang LJ, Mahjouri-samani M, Thirugnanam P, Huang X, Wang MM, Jiang L, Lu YF (2013) APL Mat 1:012101

    Article  Google Scholar 

  12. Chen YC, Hsu YK, Lin YG, Lin YK, Horng YY, Chen LC, Chen KH (2011) Electrochim Acta 56:7124–7130

    Article  CAS  Google Scholar 

  13. Padmanathan N, Selladurai S (2014) RSC Adv 4:8341–8349

    Article  CAS  Google Scholar 

  14. Feng L, Zhu Y, Ding H, Ni C (2014) J Power Sources 267:430–444

    Article  CAS  Google Scholar 

  15. Cheng S, Yang L, Liu Y, Lin W, Huang L, Chen D, Wong CP, Liu M (2013) J Mater Chem A1:7709–7716

    Article  Google Scholar 

  16. Peng X, Peng L, Wu C, Xie Y (2014) Chem Soc Rev 43:3303–3323

    Article  CAS  Google Scholar 

  17. Fischer AE, Pettigrew KA, Rolison DR, Stroud RM, Long JW (2007) Nano Lett 7:281–286

    Article  CAS  Google Scholar 

  18. Fan Shi L, Li X-W, Chang-dong G, Jiang-ping T (2014) RSC Adv 4:41910–41921

    Article  Google Scholar 

  19. Nicolosi V, Chhowalla M, Kanatzidis MG, Strano MS, Coleman JN (2013) Science 340:1226419

    Article  Google Scholar 

  20. Zhang G, Lou XW (2013) Adv Mater 25:976–979

    Article  CAS  Google Scholar 

  21. Zhu J, Jiang J, Liu J, Ding R, Ding H, Feng Y, Wei G, Huang X (2011) J Solid State Chem 184:578–583

    Article  CAS  Google Scholar 

  22. Hasan M, Jamal M, Razeeb KM (2012) Electrochim Acta 60:193–200

    Article  CAS  Google Scholar 

  23. Kim JH, Zhu K, Yan Y, Perkins CL, Frank AJ (2010) Nano Lett 10:4099–4104

    Article  CAS  Google Scholar 

  24. Dam DT, Wang X, Lee JM (2013) Nano Energ 2:1303–1313

    Article  CAS  Google Scholar 

  25. Lu Z, Chang Z, Liu J, Sun X (2011) Nano Res 4(7):658–665

    Article  CAS  Google Scholar 

  26. Yuan C, Li J, Hou L, Zhang X, Shen L, Lou XW (2012) Adv Funct Mater 22:4592–4597

    Article  CAS  Google Scholar 

  27. Gupta V, Gupta S, Miura N (2010) J Power Sources 195:3757–3760

    Article  CAS  Google Scholar 

  28. Wang H, Wang X (2013) ACS Appl Mater Interfaces 5:6255–6260

    Article  CAS  Google Scholar 

  29. Junyi J, Li Li Z, Hengxing J, Yang L, Xin Z, Xin B, Xiaobin F, Fengbao Z, Ruoff RS (2011) ACS Nano 7:6237–6243

    Google Scholar 

  30. Zhao J, Chen J, Xu S, Shao M, Yan D, Wei M, Evans DG, Duan X (2013) J Mater Chem A 1:8836–8843

    Article  CAS  Google Scholar 

  31. Li Y, Fu ZY, Su BL (2012) Adv Funct Mater 22:4634–4667

    Article  CAS  Google Scholar 

  32. Gao F, Wei Q, Yang J, Bi H, Wang M (2013) Ionics 19:1883–1889

    Article  CAS  Google Scholar 

  33. Padmanathan N, Selladurai S (2014) Ionics 20:409–420

    Article  CAS  Google Scholar 

  34. Xia X, Jiangping T, Mai Y, Chen R, Wang X, Changdong G, Zhao X (2011) Chem Eur J 17:10898–10905

    Article  CAS  Google Scholar 

  35. Qian Y, Liu R, Wang Q, Xu J, Chen D, Shen G (2014) J Mater Chem A 2:10917–10922

    Article  CAS  Google Scholar 

  36. Lua W, Qu L, Henry K, Dai L (2009) J Power Sources 189:1270–1277

    Article  Google Scholar 

  37. Sellam, Hashmi SA (2013) ACS Appl Mater Interfaces 5:3875–3883

    Article  CAS  Google Scholar 

  38. Coadou E, Timperman L, Jacquemin J, Galiano H, Hardacre C, Anouti M (2013) J Phys Chem C 117:10315–10325

    Article  CAS  Google Scholar 

  39. Luan F, Wang G, Ling Y, Lu X, Wang H, Tong Y, Liu XX, Li Y (2013) Nanoscale 5:7984–7990

    Article  CAS  Google Scholar 

  40. Dam DT, Lee JM (2013) Electrochim Acta 108:617–623

    Article  CAS  Google Scholar 

  41. McNulty D, Buckley DN, O’Dwyer C (2014) J Electrochem Soc 161:A1321–A1329

    Article  CAS  Google Scholar 

  42. Cao CY, Guo W, Cui ZM, Song WG, Cai W (2011) J Mater Chem 21:3204–3209

    Article  CAS  Google Scholar 

  43. Wang YG, Xia YY (2006) Electrochim Acta 51:3223–3227

    Article  CAS  Google Scholar 

  44. Yang CM, Kim YJ, Endo M, Kanoh H, Yudasaka M, Iijima S, Kaneko K (2007) J Am Chem Soc 129:20

    Article  CAS  Google Scholar 

  45. Zhang LL, Zhao X, Stoller MD, Zhu Y, Ji H, Shanthi M, Yaping W, Stephen P, Brandon C, Ruoff RS (2012) Nano Lett 12:1806–1812

    Article  CAS  Google Scholar 

  46. Dey AN, Sullivan BB (1970) J Electrochem Soc 117:222–224

    Article  CAS  Google Scholar 

  47. Xing L, Wang C, Li W, Mengqing X, Meng X, Zhao S (2009) J Phys Chem B 113:5181–5187

    Article  CAS  Google Scholar 

  48. Padmanathan N, Selladurai S (2015) KM Razeeb. RSC Adv 5:12700–12709

    Article  CAS  Google Scholar 

  49. Xia H, Meng YS, Yuan G, Cui C, Li L (2012) Electrochem Solid-State Lett 15(4):A60–A63

    Article  CAS  Google Scholar 

  50. Burke A (2007) Electrochim Acta 53:1083–1091

    Article  CAS  Google Scholar 

  51. Zhang YQ, Xia XH, Tu JP, Mai YJ, Shi SJ, Wang XL, Gu CD (2012) J Power Sources 199:413–417

    Article  CAS  Google Scholar 

  52. Gao Z-H, Zhang H, Cao G-P, Han M-F, Yang Y-S (2013) Electrochim Acta 87:375–380

    Article  CAS  Google Scholar 

  53. Liang K, Tang X, Wencheng H (2012) J Mater Chem 22:11062–11067

    Article  CAS  Google Scholar 

  54. Pang H, Shi Y, Jimin D, Ma Y, Li G, Chen J, Zhang J, Zheng H, Yuan B (2012) Electrochim Acta 85:256–262

    Article  CAS  Google Scholar 

  55. Tanga Y, Liua Y, Yua S, Zhaoa Y, Mub S, Gao F (2014) Electrochim Acta 123:158–166

    Article  Google Scholar 

  56. Kim BK, Chabot V, Yu A (2013) Electrochim Acta 109:370–380

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The author acknowledges the financial support from EU FP7 project MANpower (contract number: 604360) to carry out this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kafil M. Razeeb.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 683 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Padmanathan, N., Selladurai, S., Rahulan, K.M. et al. NiO hybrid nanoarchitecture-based pseudocapacitor in organic electrolyte with high rate capability and cycle life. Ionics 21, 2623–2631 (2015). https://doi.org/10.1007/s11581-015-1444-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-015-1444-9

Keywords

Navigation