Skip to main content

Advertisement

Log in

Challenges and prospects of anodes for solid oxide fuel cells (SOFCs)

  • Review
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

A solid oxide fuel cell (SOFC) is an energy conversion device, which directly converts chemical fuels (e.g., H2, CO, and CxHy) into electricity and heat with high efficiency up to about 90 %. The main by-product CO2 when hydrocarbons used as fuels can be sequestrated or subsequently chemically transformed into chemical fuels (e.g., CO) by electrolysis using renewable energy sources, such as solar and wind. The state-of-the-art nickel and yttria-stabilized zirconia (YSZ) composite (Ni-YSZ) anode is deactivated in the presence of ppm level of H2S and forming coke in hydrocarbons at the operating temperature of SOFCs. Currently, mixed ion and electron conducting (MIEC) metal oxides are being considered as alternatives for Ni-YSZ anode in SOFCs. In this review, we report the recent development of MIEC metal oxides anodes for advanced SOFCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. Keeling CD (1957) Variations in concentration and isotopic abundances of atmospheric carbon dioxide. Proceedings of the Conference on Recent Research in Climatology, H Craig, Ed (Committee on Research in Water Resources and University of California, Scripps Institution of Oceanography, La Jolla, CA, 1957):43–49

  2. Keeling CD, Whorf TP, Wahlen M, Jvd P (1995) Interannual extremes in the rate of rise of atmospheric carbon dioxide since 1980. Nature 375:666–670. doi:10.1038/375666a0

    Article  CAS  Google Scholar 

  3. Hansen J, Johnson D, Lacis A, Lebedeff S, Lee P, Rind D, Russell G (1981) Climate impact of increasing atmospheric carbon dioxide. Science 213:957–966. doi:10.1126/science.213.4511.957

    Article  CAS  Google Scholar 

  4. Hansen J, Ruedy R, Glascoe J, Sato M (1999) GISS analysis of surface temperature change. J Geophys Res 104:30997–31022. doi:10.1029/1999JD900835

    Article  Google Scholar 

  5. Hansen J, Ruedy R, Sato M, Lo K (2010) Global surface temperature change. Rev Geophys 48:RG4004. doi:10.1029/2010RG000345

    Google Scholar 

  6. Hansen JE, Lebedeff S (1987) Global trends of measured surface air temperature. J Geophys Res 92:13345–13372. doi:10.1029/JD092iD11p13345

    Article  Google Scholar 

  7. Hansen JE, Ruedy R, Sato M, Imhoff M, Lawrence W, Easterling D, Peterson T, Karl T (2001) A closer look at United States and global surface temperature change. J Geophys Res 106:23947–23963. doi:10.1029/2001JD000354

    Article  Google Scholar 

  8. Chen X, Tung K-K (2014) Varying planetary heat sink led to global-warming slowdown and acceleration. Science 345(6199):897–903. doi:10.1126/science.1254937

    Article  CAS  Google Scholar 

  9. Bristish Petroleum (2013) British petroleum statistical review of world energy. http://www.bp.com/content/dam/bp/pdf/statistical-review/statistical_review_of_world_energy_2013.pdf

  10. Conway BE, Birss V, Wojtowicz J (1997) The role and utilization of pseudocapacitance for energy storage by supercapacitors. J Power Sources 66:1–14. doi:10.1016/S0378-7753(96)02474-3

    Article  CAS  Google Scholar 

  11. Badi S-P, Wagemaker M, Ellis BL, Singh DP, Borghols WJH, Kan WH, Ryan DH, Mulder FM, Nazar LF (2011) Direct synthesis of nanocrystalline Li0.90FePO4: observation of phase segregation of anti-site defects on delithiation. J Mater Chem 21:10085–10093. doi:10.1039/C0JM04378H

    Article  CAS  Google Scholar 

  12. Ellis B, Kan WH, Makahnouk WRM, Nazar LF (2007) Synthesis of nanocrystals and morphology control of hydrothermally prepared LiFePO4. J Mater Chem 17:3248–3254. doi:10.1039/b705443m

    Article  CAS  Google Scholar 

  13. Kan WH (2009) Study of the morphology control and solid solution behaviour of Olivine LiMPO4 (M = Fe, Mn, and Co). University of Waterloo

  14. Lee KT, Kan WH, Nazar LF (2009) Proof of intercrystallite ionic transport in LiMPO4 electrodes (M = Fe, Mn). J Am Chem Soc 131:6044–6045. doi:10.1021/ja8090559

    Article  CAS  Google Scholar 

  15. Singhal SC, Kendall K (2003) High temperature solid oxide fuel cells fundamentals, design and applications. Elsevier, Oxford

    Google Scholar 

  16. Larminie J, Dicks A (2003) Fuel cell systems explained, 2nd edn. Wiley, New York

    Book  Google Scholar 

  17. O’Hayre R, Cha S-W, Colella W, Prinz FB (2009) Fuel cell fundamentals. Wiley, New York

    Google Scholar 

  18. Ishihara T (2009) Perovskite oxide for solid oxide fuel cells. Springer, Berlin

    Book  Google Scholar 

  19. Wu Z-S, Parvez K, Feng X, Müllen K (2013) Graphene-based in-plane micro-supercapacitors with high power and energy densities. Nat Commun 4:2487/2481–2487/2488. doi:10.1038/ncomms3487

    Google Scholar 

  20. Narayan SR, Valdez TI (2008) High-energy portablef fuel cell power sources. Electrochem Soc Interface 17:40–45

    CAS  Google Scholar 

  21. Barnett SA (2003) Handbook of fuel cell technology, vol 4. Wiley, New York

    Google Scholar 

  22. Goodenough JB, Huang Y-H (2007) Alternative anode materials for solid oxide fuel cells. J Power Sources 173:1–10. doi:10.1016/j.jpowsour.2007.08.011

    Article  CAS  Google Scholar 

  23. Singhal SC (2000) Advances in solid oxide fuel cell technology. Solid State Ionics 135:305–313. doi:10.1016/S0167-2738(00)00452-5

    Article  CAS  Google Scholar 

  24. Jacobson AJ (2010) Materials for solid oxide fuel cells. Chem Mater 22:660–674. doi:10.1021/cm902640j

    Article  CAS  Google Scholar 

  25. Atkinson A, Barnett S, Gorte RJ, Irvine JTS, McEvoy AJ, Mogensen M, Singhal SC, Vohs J (2004) Advanced anodes for high-temperature fuel cells. Nat Mater 3:17–27. doi:10.1038/nmat1040

    Article  CAS  Google Scholar 

  26. Winkler W, Lorenz H (2002) The design of stationary and mobile solid oxide fuel cell-gas turbine systems. J Power Sources 105:222–227. doi:10.1016/S0378-7753(01)00943-0

    Article  CAS  Google Scholar 

  27. Wray P (2010) Bloom bursts into SOFC business. Am Ceram Soc Bull 89:25–25

    CAS  Google Scholar 

  28. Endo M (2012) The future perspective of SOFC. Nenryo Denchi 12:60–66

    Google Scholar 

  29. Steele BCH (2000) Materials for IT-SOFC stacks 35 years R&D: the inevitability of gradualness? Solid State Ionics 134:3–20. doi:10.1016/S0167-2738(00)00709-8

    Article  CAS  Google Scholar 

  30. Williams MC, Strakey J, Sudoval W (2006) U.S. DOE fossil energy fuel cells program. J Power Sources 159:1241–1247. doi:10.1016/j.jpowsour.2005.12.085

    Article  CAS  Google Scholar 

  31. Park S, Vohs JM, Gorte RJ (1999) Direct oxidation of hydrocarbons in a solid-oxide fuel cell. Nature 404:265–267. doi:10.1038/35005040

    Google Scholar 

  32. Murray EP, Tsai T, Barnett SA (1999) A direct-methane fuel cell with a ceria-based anode. Nature 400:649–651. doi:10.1038/23220

    Article  CAS  Google Scholar 

  33. Huang Y-H, Dass RI, Xing Z-L, Goodenough JB (2006) Double perovskites as anode materials for solid-oxide fuel cells. Science 312:254–257. doi:10.1126/science.1125877

    Article  CAS  Google Scholar 

  34. Skinner SJ, Kilner JA (2000) Oxygen diffusion and surface exchange in La2-xSrxNiO4+δ. Solid State Ionics 135:709–712. doi:10.1016/S0167-2738(00)00388-X

    Article  CAS  Google Scholar 

  35. Eguchi K, Setoguchi T, Inoue T, Arai H (1992) Electrical properties of ceria-based oxides and their application to solid oxide fuel cells. Solid State Ionics 52:165–172. doi:10.1016/0167-2738(92)90102-U

    Article  CAS  Google Scholar 

  36. Huang K, Tichy RS, Goodenough JB (1998) Superior perovskite oxide-ion conductor; strontium- and magnesium-doped LaGaO3: I, phase relationships and electrical properties. J Am Ceram Soc 81(10):2565–2575. doi:10.1111/j.1151-2916.1998.tb02662.x

    Article  CAS  Google Scholar 

  37. Mogensen M, Sammes NM, Tompsett GA (2000) Physical, chemical and electrochemical properties of pure and doped ceria. Solid State Ionics 129:63–94. doi:10.1016/S0167-2738(99)00318-5

    Article  CAS  Google Scholar 

  38. Fabbri E, Pergolesi D, Traversa E (2010) Materials challenges toward proton-conducting oxide fuel cells: a critical review. Chem Soc Rev 39(11):4355–4369. doi:10.1039/b902343g

    Article  CAS  Google Scholar 

  39. Thangadurai V, Kan WH, Mirfakhraei B, Bhella SS, Trinh TT (2011) Materials for proton conducting solid oxide fuel cells (H-SOFCs). ECS Trans 35:483–492. doi:10.1149/1.3570024

    Article  CAS  Google Scholar 

  40. Suzuki T, Hasan Z, Funahashi Y, Yamaguchi T, Fujishiro Y, Awano M (2009) Impact of anode microstructure on solid oxide fuel cells. Science 325:852–855. doi:10.1126/science.1176404

    Article  CAS  Google Scholar 

  41. Wilson JR, Kobsiriphat W, Mendoza R, Chen H-Y, Hiller JM, Miller DJ, Thornton K, Voorhees PW, Adler SB, Barnett SA (2006) Three-dimensional reconstruction of a solid-oxide fuel-cell anode. Nat Mater 5:541–544. doi:10.1038/nmat1668

    Article  CAS  Google Scholar 

  42. Simwonis D, Tietz F, Stover D (2000) Nickel coarsening in annealed Ni/8YSZ anode substrates for solid oxide fuel cells. Solid State Ionics 132:241–251. doi:10.1016/S0167-2738(00)00650-0

    Article  CAS  Google Scholar 

  43. Yang L, Cheng Z, Liu M, Wilson L (2010) New insights into sulfur poisoning behavior of Ni-YSZ anode from long-term operation of anode-supported SOFCs. Energy Environ Sci 3:1804–1809. doi:10.1039/C0EE00386G

    Article  CAS  Google Scholar 

  44. Yang L, Choi Y, Qin W, Chen H, Blinn K, Liu M, Liu P, Bai J, Tyson TA, Liu M (2011) Promotion of water-mediated carbon removal by nanostructured barium oxide/nickel interfaces in solid oxide fuel cells. Nat Commun 2:1359/1351–1359/1359. doi:10.1038/ncomms1359

    Article  Google Scholar 

  45. Shao Z, Haile SM (2004) A high-performance cathode for the next generation of solid-oxide fuel cells. Nature 431:170–173. doi:10.1038/nature02863

    Article  CAS  Google Scholar 

  46. Liu J, Co AC, Paulson S, Birss VI (2006) Oxygen reduction at sol–gel derived La0.8Sr0.2Co0.8Fe0.2O3 cathodes. Solid State Ionics 117:377–387. doi:10.1016/j.ssi.2005.11.005

    Article  Google Scholar 

  47. Wang S, He Q, Liu M (2009) Promising Ni-Fe-LSGMC anode compatible with lanthanum gallate electrolyte. Electrochim Acta 54:3872–3876. doi:10.1016/j.electacta.2009.02.002

    Article  CAS  Google Scholar 

  48. Smith TR, Wood A, Birss VI (2009) Effect of hydrogen sulfide on the direct internal reforming of methane in solid oxide fuel cells. Appl Catal A 354:1–7. doi:10.1016/j.apcata.2008.10.055

    Article  CAS  Google Scholar 

  49. Mogensen M, Bentzen JJ (1989) Oxidation of methane on oxide electrodes at 800-1000 °C. Proc Electrochem Soc 89–11:99–110

    Google Scholar 

  50. Marina OA, Bagger C, Primdahl S, Mogensen M (1999) A solid oxide fuel cell with a gadolinia-doped ceria anode: preparation and performance. Solid State Ionics 123:199. doi:10.1016/S0167-2738(99)00111-3

    Article  CAS  Google Scholar 

  51. Takahashi T, Iwahara H, Suzuki Y (1969) Proceedings of the third international symposium on fuel cells. bruxelles : presses academiques europeennes. Journees Int Etude Piles Combust 3:113–119

    Google Scholar 

  52. Steele BCH, Kelly I, Middleton H, Rudkin R (1988) Oxidation of methane in solid state electrochemical reactors. Solid State Ionics 28–30:1547–1552. doi:10.1016/0167-2738(88)90417-1

    Article  Google Scholar 

  53. Zhan ZI, Barnett SA (2005) An octane-fueled solid oxide fuel cell. Science 308:844–847. doi:10.1126/science.1109213

    Article  CAS  Google Scholar 

  54. Zhang C-J, Grass ME, McDaniel AH, DS C, Gabaly FE, Liu Z, McCarty KF, Farrow RL, Linne MA, Hussain Z, Jackson GS, Bluhm H, Eichhorn BW (2010) Measuring fundamental properties in operating solid oxide electrochemical cells by using in situ x-ray photoelectron spectroscopy. Nat Mater 9:944–949. doi:10.1038/nmat2851

    Article  CAS  Google Scholar 

  55. Chueh WC, Hao Y, Jung WC, Haile SM (2012) High electrochemical activity of the oxide phase in model ceria–Pt and ceria–Ni composite anodes. Nat Mater 11:155–161. doi:10.1038/nmat3184

    Article  CAS  Google Scholar 

  56. Handal HT, Thangadurai V (2013) Evaluation of chemical stability, thermal expansion coefficient, and electrical properties of solid state and wet-chemical synthesized Y and Mn-codoped CeO2 for solid oxide fuel cells. J Power Sources 243:458–471. doi:10.1016/j.jpowsour.2013.05.173

    Article  CAS  Google Scholar 

  57. Li Q, Thangadurai V (2010) A comparative 2 and 4-probe DC and 2-probe AC electrical conductivity of novel co-doped Ce0.9−xRExMo0.1O2.1–0.5x (RE = Y, Sm, Gd; x = 0.2, 0.3). J Mater Chem 20:7970–7983. doi:10.1039/C0JM01324B

    Article  CAS  Google Scholar 

  58. Mirfakhraei B, Birss V, Thangadurai V, Paulson S, Bere KE, Gitzhofer F (2011) Electrochemical performance and H2S poisoning study of Mo-doped ceria (CMO) SOFC anodes. ECS Trans 35:1727–1734. doi:10.1149/1.3570160

    Article  CAS  Google Scholar 

  59. Chen Y, Bunch J, Jin C, Yang C, Chen F (2012) Performance enhancement of Ni-YSZ electrode by impregnation of Mo0.1Ce0.9O2+δ. J Power Sources 204:40–45. doi:10.1016/j.jpowsour.2012.01.019

    Article  CAS  Google Scholar 

  60. Smart LE, Moore EA (2005) Solid state chemistry an introduction, 3rd edn. CRC Taylor & Francis, Prentice Hall

    Google Scholar 

  61. West AR (2009) Solid state chemistry and its applications. Wiley, New York

    Google Scholar 

  62. Tao S, Irvine JTS (2003) A redox-stable, efficient anode for solid-oxide fuel cells. Nat Mater 2:320–323. doi:10.1038/nmat871

    Article  CAS  Google Scholar 

  63. Ruiz-Morales JC, Canales-Vazquez J, Savaniu C, Marrero-Lopez D, Zhou W, Irvine JTS (2006) Disruption of extended defects in solid oxide fuel cell anodes for methane oxidation. Nature 439(7076):568–571. doi:10.1038/nature04438

    Article  CAS  Google Scholar 

  64. Yang L, Wang S, Blinn K, Liu M, Cheng Z, Liu M (2009) Enhanced sulfur and coking tolerance of a mixed ion conductor for SOFCs: BaZr0.1Ce0.7Y0.2–xYbxO3–δ. Science 326:126–129. doi:10.1126/science.1174811

    Article  CAS  Google Scholar 

  65. Shima D, Haile SM (1997) The influence of cation non-stoichiometry on the properties of undoped and gadolinia-doped barium cerate. Solid State Ionics 97:443–455. doi:10.1016/S0167-2738(97)00029-5

    Article  CAS  Google Scholar 

  66. Mirfakhraei B, Ramezanipour F, Paulson S, Birss V, Thangadurai V (2014) Effect of sintering temperature on microstructure, chemical stability, and electrical properties of transition metal or Yb-doped BaZr0.1Ce0.7Y0.1 M0.1O3−δ (M = Fe, Ni, Co, and Yb). Front Energy Res 2:9/1–9/10. doi:10.3389/fenrg.2014.00009

    Article  Google Scholar 

  67. Du Y, Nowick AS (1996) Galvanic cell measurements on a fast proton conducting complex perovskite electrolyte. Solid State Ionics 91:85–91. doi:10.1016/S0167-2738(96)00409-2

    Article  CAS  Google Scholar 

  68. Liang KC, Du Y, Nowick AS (1994) Fast high-temperature proton transport in nonstoichiometric mixed perovskites. Solid State Ionics 69:117–120. doi:10.1016/0167-2738(94)90399-9

    Article  CAS  Google Scholar 

  69. Liang KC, Nowick AS (1998) Protonic conduction in nonstoichiometric Sr2(Bʹ1.1Nb0.9)O6 compounds. Electrochem Soc Proc 97–24:28–35

    Google Scholar 

  70. Liang KC, Nowick AS (1993) High-temperature protonic conduction in mixed perovskite ceramics. Solid State Ionics 61:77–81. doi:10.1016/0167-2738(93)90337-3

    Article  CAS  Google Scholar 

  71. Nowick AS, Du Y, Liang KC (1999) Some factors that determine proton conductivity in nonstoichiometric complex perovskites. Solid State Ionics 125:303–311. doi:10.1016/S0167-2738(99)00189-7

    Article  CAS  Google Scholar 

  72. Nowick AS, Du Y, Liang KC (2000) Effect of non-stoichiometry on the protonic and oxygen-ionic conductivity of Sr2(ScNb)O6: a complex perovskite. Solid State Ionics 129:201–207. doi:10.1016/S0167-2738(99)00326-4

    Article  CAS  Google Scholar 

  73. Du Y, Nowick AS (1995) Structural transitions and proton conduction in nonstoichiometric A3BʹB2ʺO9 perovskite-type oxides. J Am Ceram Soc 78:3033–3039. doi:10.1111/j.1151-2916.1995.tb09079.x

    Article  CAS  Google Scholar 

  74. Viana HDAL, Irvine JTS (2010) Characterisation of lower temperature sintered zinc-doped barium calcium niobate proton conducting electrolytes. J Mater Chem 20:8506–8511. doi:10.1039/C0JM01230K

    Article  CAS  Google Scholar 

  75. Bhella SS, Thangadurai V (2009) Synthesis and characterization of carbon dioxide and boiling water stable proton conducting double perovskite-type metal oxides. J Power Sources 186:311–319. doi:10.1016/j.jpowsour.2008.09.110

    Article  CAS  Google Scholar 

  76. Kan WH, Roushanafshar M, Vincent A, Fürstenhaupt T, Parvez M, Luo J, Thangadurai V (2013) Substitution of B-sites by Mn, Fe and Co in double perovskite-type Ba3CaNb2O9 on crystal structure and electrical properties. RSC Adv 3:23824–23832. doi:10.1039/c3ra44429e

    Article  CAS  Google Scholar 

  77. Kan WH, Trang TT, Fürstenhaupt T, Thangadurai V (2011) Synthesis, rietveld refinement of crystal structure, electron diffraction, and electrical transport properties of Ba2(Ca1–x–yFexNby)(Nb1–zFez)O6–δ double perovskites. Can J Chem 89:688–696. doi:10.1139/v11-058

    Article  CAS  Google Scholar 

  78. Trinh TT, Thangadurai V (2010) Effect of Ti substitution for Nb in double perovskite-type Ba3CaNb2O9 on chemical stability and electrical conductivity. Electrochim Acta 56:227–234. doi:10.1016/j.electacta.2010.08.094

    Article  CAS  Google Scholar 

  79. Kan WH, Chen M, Bae J-S, Kim B-H, Thangadurai V (2014) Determination of Fe oxidation states in the B-site ordered perovskite-type Ba2Ca0.67Fe0.33NbO6-δ at the surface (nano-scale) and bulk by variable temperature XPS and TGA and their impact on electrochemical catalysis. J Mater Chem A 2(23):8736–8741. doi:10.1039/C4TA00811A

    Article  CAS  Google Scholar 

  80. Kan WH, Lussier J, Bieringer M, Thangadurai V (2014) Studies on polymorphic sequence during the formation of the 1:1 ordered perovskite-type BaCa0.335 M0.165Nb0.5O3-δ (M = Mn, Fe, Co) using in situ and ex situ powder x-ray diffraction. Inorg Chem 53(19):10085–10093. doi:10.1021/ic501270k

    Article  CAS  Google Scholar 

  81. Gerlach RG, Bhella SS, Thangadurai V (2009) Facile conversion of layered Ruddlesden-Popper-related structure Y2O3-doped Sr2CeO4 into fast oxide ion-conducting fluorite-type Y2O3-doped CeO2. Inorg Chem 48(1):257–266. doi:10.1021/ic801729x

    Article  CAS  Google Scholar 

  82. Danielson E, Devenney M, Giaquinta DM, Golden JH, Haushalter RC, McFarland EW, Poojary DM, Reaves CM, Weinberg WH, Wu XD (1998) A rare-earth phosphor containing one-dimensional chains identified through combinatorial methods. Science 279(5352):837–839. doi:10.1126/science.279.5352.837

    Article  CAS  Google Scholar 

  83. Danielson E, Devenney M, Giaquinta DM, Golden JH, Haushalter RG, McFarland EW, Poojary DM, Reaves CM, Weinberg WH, Di Wu X (1998) X-ray powder structure of Sr2CeO4: a new luminescent material discovered by combinatorial chemistry. J Mol Struct 470(1–2):229–235. doi:10.1016/s0022-2860(98)00485-2

    Article  CAS  Google Scholar 

  84. Kan WH, Thangadurai V (2012) Thermochemistry of Sr2Ce1–xPrxO4 (x = 0, 0.2, 0.5, 0.8, and 1): variable-temperature and -atmosphere in situ and ex situ powder x-ray diffraction studies and their physical properties. Inorg Chem 51:8973–8981. doi:10.1021/ic301071x

    Article  CAS  Google Scholar 

  85. Li Q, Thangadurai V (2011) Novel Nd2WO6-type Sm2-xAxM1-yByO6-δ (A = Ca, Sr; M = Mo, W; B = Ce, Ni) mixed conductors. J Power Sources 196:169–178. doi:10.1016/j.jpowsour.2010.06.055

    Article  CAS  Google Scholar 

  86. Tao S, Irvine JTS (2003) A redox-stable, efficient anode for solid-oxide fuel cells. Nat Mater 2:320. doi:10.1038/nmat871

    Article  CAS  Google Scholar 

  87. Tao S, Irvine JTS (2006) Phase transition in perovskite oxide La0.75Sr0.25Cr0.5Mn0.5O3-δ observed by in situ high-temperature neutron powder diffraction. Chem Mater 18:5453–5460. doi:10.1021/cm061413n

    Article  CAS  Google Scholar 

  88. Kan WH, Trang TT, Fürstenhaupt T, Thangadurai V (2011) Development of novel Fe-doped barium calcium niobates as promising mixed conductors for solid oxide fuel cells (SOFCs). ECS Trans 35:1259–1266. doi:10.1149/1.3570111

    Article  CAS  Google Scholar 

  89. Zhou X, Yan N, Chuang KT, Luo J (2014) Progress in La-doped SrTiO3 (LST)-based anode materials for solid oxide fuel cells, RSC Adv 4:118–131. doi:10.1039/c3ra42666a

  90. Souza S, Visco SJ, De Jonghe LC (1997) Reduced-temperature solid oxide fuel cell based on YSZ thin-film electrolyte, J. Electrochem. Soc., 144, L35-L37. doi:10.1149/1.1837484

Download references

Acknowledgments

This research was supported through funding by the NSERC solid oxide fuel cell Canada Strategic Research Network from the Natural Science and Engineering Research Council of Canada (NSERC) and other sponsors listed at www.sofccanada.com and the NSERC through a Discovery Grants. One of us (VT) thanks the Canada Foundation for Innovation (CFI) for support as Leaders Opportunity Fund to establish advanced laboratory for material characterization.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Venkataraman Thangadurai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kan, W.H., Thangadurai, V. Challenges and prospects of anodes for solid oxide fuel cells (SOFCs). Ionics 21, 301–318 (2015). https://doi.org/10.1007/s11581-014-1334-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-014-1334-6

Keywords

Navigation