Skip to main content
Log in

Differential pulse voltammetric determination of methyldopa using MWCNTs modified glassy carbon decorated with NiFe2O4 nanoparticles

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

A nanosensor was introduced for a sensitive determination of methyldopa using multiwall carbon nanotubes (MWCNTs) decorated with ferrite nickel nanoparticles (NiFe2O4) on a glassy carbon electrode. The electrochemical activity of the modified electrode for the determination of methyldopa was investigated using differential pulse voltammetry, cyclic voltammetry, and electrochemical impedance spectroscopy. The results showed that the modified electrode exhibits synergistic activity to the oxidation of methyldopa. The influence of several parameters that affect the response of the modified electrode was studied. A wide linear dynamic range of 0.5 to 900 μmol L−1 methyldopa with a detection limit of 0.08 μmol L−1 was achieved using differential pulse voltammetry. The interference of foreign substances on the selectivity of the electrochemical sensor was evaluated. Finally, the proposed method was successfully applied for the determination of methyldopa in real samples such as human urine, tablet, and plasma with satisfactory results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Scheme 2
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Hoffman BB, Lefkowitz RJ (2001) Catecholamines, sympathomimetic drugs and adrenergic receptor antagonists. In: Gilman AG, Hardman JG, Limbird LE, Molinoff PB, Ruddon RW (eds) The pharmacological basis of therapeutics, 10th edn. MacGraw-Hill, New York, pp 211–219

    Google Scholar 

  2. Sambrook AM, Small RC (2008) The treatment of hypertension in pregnancy. Anaesth Intensive Care Med 9:128–131. doi:10.1016/j.mpaic.2008.01.008

    Article  Google Scholar 

  3. Kwan KC (1976) Pharmacokinetics of methyldopa in man. J Pharmacol Exp Ther 198:264–274

    CAS  Google Scholar 

  4. Myhre E, Rugstad HE, Hansen T (1982) Clinical pharmacokinetics of methyldopa. Clin Pharmacokinet 198:221–233. doi:10.2165/00003088-198207030-00003

    Article  Google Scholar 

  5. Ribeiro PRS, Gomes Neto JA, Pezza L, Pezza HR (2005) Flow-injection spectrophotometric determination of methyldopa in pharmaceutical formulations. Talanta 67:240–244. doi:10.1016/j.talanta.2005.03.001

    Article  CAS  Google Scholar 

  6. Vieira IC, Fatibello-Filho O (1998) Spectrophotometric determination of methyldopa and dopamine in pharmaceutical formulations using a crude extract of sweet potato root (Ipomoea batatas Lam.) as enzymatic source. Talanta 46:559–564. doi:10.1016/S0039-9140(97)00317-2

    Article  Google Scholar 

  7. Ribeiro PRS, Pezza L, Pezza HR (2006) Determination of methyldopa in pharmaceutical formulations by combined spot test-diffuse reflectance spectroscopy. J Braz Chem Soc 17:674–679. doi:10.1590/S0103-50532006000400007

    Article  CAS  Google Scholar 

  8. Tubino M, Batista DCDV, Rodrigues JAR (2006) Kinetic method for the determination of methyldopa in pharmaceutical preparations. Anal Lett 39:327–339. doi:10.1080/00032710500477050

    Article  CAS  Google Scholar 

  9. Rona K, Ary K, Gachalyi B, Klebovich B (1996) Determination of α-methyldopa in human plasma by validated high-performance liquid chromatography with fluorescence detection. J Chromatogr A 730:125–131. doi:10.1016/0021-9673(95)01227-3

    Article  CAS  Google Scholar 

  10. Salem FB (1993) Spectrophotometric and fluorimetric determination of catecholamines. Anal Lett 26:281–294. doi:10.1080/00032719308017385

    Article  CAS  Google Scholar 

  11. Bahrami G, Kiani A, Mirzaeei S (2006) A rapid high performance liquid chromatographic determination of methyldopa in human serum with fluorescence detection and alumina extraction, application to a bioequivalence study. J Chromatogr B 832:197–201. doi:10.1016/j.jchromb.2005.12.045

    Article  CAS  Google Scholar 

  12. Zecevic M, Zivanovic L, Agatonovic-Kustrin S, Minic D (2001) The use of a response surface methodology on HPLC analysis of methyldopa, amiloride and hydrochlorothiazide in tablets. J Pharm Biomed Anal 24:1019. doi:10.1016/S0731-7085(00)00536-7

    Article  CAS  Google Scholar 

  13. Oliveira CH, Barrientos-Astigarraga RE, Sucupira M, Graudenz GS, Muscará MN, Nucci GD (2002) Quantification of methyldopa in human plasma by high-performance liquid chromatography-electrospray tandem mass spectrometry application to a bioequivalence study. J Chromatogr B 768:341–348. doi:10.1016/S1570-0232(01)00612-2

    Article  CAS  Google Scholar 

  14. Nozaki O, Iwaeda T, Kato Y (1996) Amines for detection of dopamine by generation of hydrogen peroxide and peroxyoxalate chemiluminescence. J Biolumin Chemilumin 11:309–313. doi:10.1002/(SICI)1099-1271(199611)11:6<309::AID-BIO424>3.0.CO;2-6

    Article  CAS  Google Scholar 

  15. Nozaki O, Iwaeda T, Moriyama H, Kato Y (1999) Chemiluminescent detection of catecholamines by generation of hydrogen peroxide with imidazole. Luminescence 14:123–127. doi:10.1002/(SICI)1522-7243(199905/06)14:3<123::AID-BIO525>3.0.CO;2-I

    Article  CAS  Google Scholar 

  16. Funan C, Zhujun Z, Yingxue Z, Deyongl H (2005) Microdialysis sampling and high-performance liquid chromatography with chemiluminescence detection for in-vivo on-line determination and study of the pharmacokinetics of levodopa in blood. Anal Bioanal Chem 382:211–215. doi:10.1007/s00216-005-3162-z

    Article  Google Scholar 

  17. Sharma C, Mohanty S, Kumar S, Rao NJ (1996) Gas chromatographic analysis of chlorophenolic, resin and fatty acids in chlorination and caustic extraction stage effluent from Kahi-grass. Analyst 121:1963–1976. doi:10.1039/AN9962101963

    Article  CAS  Google Scholar 

  18. Buduwy SS, Issa YM, Tag-Eldin AS (1996) Potentiometric determination of l-dopa, carbidopa, methyldopa and aspartame using a new trinitrobenzenesulfonate selective electrode. Electroanalysis 8:1060–1064. doi:10.1002/elan.1140081115

    Article  Google Scholar 

  19. Karimi H, Khalilzadeh MA, Rangbaraha Z, Beitilahi H, Ensafi AA, Zaryee D (2012) p-Chloranil modified carbon nanotubes paste electrode as a voltammetric sensor for the simultaneous determination of methyldopa and uric acid. Anal Methods 4:2088–2094. doi:10.1039/C2AY05865K

    Article  Google Scholar 

  20. Gholivand MB, Amiri M (2013) Highly sensitive and selective determination methyldopa in the presence of ascorbic acid using OPPy/TY/Au modified electrode. J Electroanal Chem 694:56–60. doi:10.1016/j.jelechem.2013.01.014

    Article  CAS  Google Scholar 

  21. Mohammadi A, Moghaddam AB, Dinarvan R, Atyabi F, Saboury AA, Badraghi J (2008) Bioelectrocatalysis of methyldopa by adsorbed tyrosinase on the surface of modified glassy carbon with carbon nanotubes. Int J Electrochem Sci 3:1248–1257

    CAS  Google Scholar 

  22. Gholivand MB, Amiri M (2009) Preparation of polypyrrole/nuclear fast red films on gold electrode and its application on the electrocatalytic determination of methyl-dopa and ascorbic acid. Electroanalysis 21:2461–2467. doi:10.1002/elan.200900231

    CAS  Google Scholar 

  23. Rezaei B, Ensafi AA, Askarpour N (2013) Adsorptive stripping voltammetry determination of methyldopa on the surface of a carboxylated multiwall carbon nanotubes modified glassy carbon electrode in biological and pharmaceutical samples. Colloids Surf B 109:253–258. doi:10.1016/j.colsurfb.2013.04.004

    Article  CAS  Google Scholar 

  24. Shahrokhian S, Rastgar S (2011) Electrodeposition of Pt–Ru nanoparticles on multi-walled carbon nanotubes: application in sensitive voltammetric determination of methyldopa. Electrochim Acta 58:125–133. doi:10.1016/j.electacta.2011.09.023

    Article  CAS  Google Scholar 

  25. Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58. doi:10.1038/354056a0

    Article  CAS  Google Scholar 

  26. Ajayan PM (1999) Nanotubes from carbon. Chem Rev 99:17871800. doi:10.1021/cr970102g

    Article  Google Scholar 

  27. Ensafi AA, Arashpour B, Rezaei B, Allafchian AR (2013) Highly selective differential pulse voltammetric determination of phenazopyridine using MgCr2O4 nanoparticles decorated MWCNTs-modified glassy carbon electrode. Colloids Surf B 111:270–276. doi:10.1016/j.colsurfb.2013.06.017

    Article  CAS  Google Scholar 

  28. Kong J, Franklin NR, Zhou CW, Chapline MG, Peng S, Cho K, Dai DJ (2000) Nanotube molecular wires as chemical sensors. Science 287:622–625. doi:10.1126/science.287.5453.622

    Article  CAS  Google Scholar 

  29. Che GL, Lakschmi BB, Fisher ER, Martin CR (1998) Carbon nanotubule membranes for electrochemical energy storage and production. Nature 393:346–349. doi:10.1038/30694

    Article  CAS  Google Scholar 

  30. Tans S, Erschueren AV, Dekker C (1998) Room-temperature transistor based on a single carbon nanotube. Nature 393:49–52. doi:10.1038/29954

    Article  CAS  Google Scholar 

  31. Szroeder P, Górska A, Tsierkezos N, Ritter U, Strupiński W (2013) The role of band structure in electron transfer kinetics in low-dimensional carbon. Materialwiss Werkst 44:226–230. doi:10.1002/mawe.201300093

    Article  CAS  Google Scholar 

  32. Tsierkezos NG, Szroeder P, Ritter U (2014) Voltammetric study on pristine and nitrogen-doped multi-walled carbon nanotubes decorated with gold nanoparticles. Microchim Acta 181:329–337. doi:10.1007/s00604-013-1118-0

    Article  CAS  Google Scholar 

  33. Tsierkezos NG, Ritter U, Knauer A, Szroeder P (2014) Electrocatalytic activity of nitrogen-doped carbon nanotubes decorated with gold nanoparticles. Electrocatalysis 5:87–95. doi:10.1007/s12678-013-0175-9

    Article  CAS  Google Scholar 

  34. Cao HQ, Zhu MF, Li YG (2006) Novel carbon nanotube iron oxide magnetic nanocomposites. J Magn Magn Mater 305:321–324. doi:10.1016/j.jmmm.2006.01.021

    Article  CAS  Google Scholar 

  35. Jia BP, Gao L, Sun J (2007) Self-assembly of magnetite beads along multiwalled carbon nanotubes via a simple hydrothermal process. Carbon 45:1476–1481. doi:10.1016/j.carbon.2007.03.025

    Article  CAS  Google Scholar 

  36. Liu Y, Jiang W, Wang Y, Zhang XJ, Song D, Li FS (2009) Synthesis of Fe3O4/CNTs magnetic nanocomposites at the liquid-liquid interface using oleate as surfactant and reactant. J Magn Magn Mater 321:408–412. doi:10.1016/j.jmmm.2008.09.039

    Article  CAS  Google Scholar 

  37. Ensafi AA, Allafchian AR, Rezaei B (2013) A sensitive and selective voltammetric sensor based on multiwall carbon nanotubes decorated with MgCr2O4 for the determination of azithromycin. Colloids Surf B 103:468–474. doi:10.1016/j.colsurfb.2012.11.021

    Article  CAS  Google Scholar 

  38. Bak SM, Kim KH, Lee CW, Kim KB (2011) Mesoporous nickel/carbon nanotube hybrid material prepared by electroless deposition. J Mater Chem 21:1984–1990. doi:10.1039/C0JM00922A

    Article  CAS  Google Scholar 

  39. Ensafi AA, Allafchian AR (2013) Multiwall carbon nanotubes decorated with NiFe2O4 magnetic nanoparticles, a new catalyst for voltammetric determination of cefixime. Colloids Surf B 102:687–693. doi:10.1016/j.colsurfb.2012.09.037

    Article  CAS  Google Scholar 

  40. Ensafi AA, Rezaei B, Mirahmadi Zare SZ, Taei M (2010) Simultaneous determination of ascorbic acid, epinephrine, and uric acid by differential pulse voltammetry using poly(3,3-bis[N, N-bis(carboxymethyl)aminomethyl]-o-cresolsulfonephthalein) modified glassy carbon electrode. Sensors Actuators B 150:321–329

    Article  CAS  Google Scholar 

  41. Shahrokhian S, Saberi RS, Kamalzadeh Z (2011) Sensitive electrochemical sensor for determination of methyldopa based on polypyrrole/carbon nanoparticle composite thin film made by in situ electropolymerization. Electroanalysis 23:2248–2254. doi:10.1002/elan.201100169

    Article  CAS  Google Scholar 

  42. Moccelini SK, Franzoi AC, Vieira IC, Dupont J, Scheeren CW (2011) A novel support for laccase immobilization: cellulose acetate modified with ionic liquid and application in biosensor for methyldopa detection. Biosens Bioelectron 26:3549–3554. doi:10.1016/j.bios.2011.01.043

    Article  CAS  Google Scholar 

  43. Salmanipour A, Taher MA, Beitollahi H (2012) Voltammetric behavior of a multi-walled carbon nanotube modified electrode-ferrocene electrocatalyst system as a sensor for determination of methyldopa in the presence of folic acid. Anal Methods 4:2982–2988. doi:10.1039/C2AY25459J

    Article  CAS  Google Scholar 

  44. Fouladgar M, Karimi-Maleh H (2013) Ionic liquid/multiwall carbon nanotubes paste electrode for square wave voltammetric determination of methyldopa. Ionics 19:1163–1170. doi:10.1007/s11581-012-0832-7

    Article  CAS  Google Scholar 

  45. Molaakbari E, Mostafavi A, Beitollahi H (2014) First report for voltammetric determination of methyldopa in the presence of folic acid and glycine. Mater Sci Eng C 36:168–172. doi:10.1016/j.msec.2013.12.013

    Article  CAS  Google Scholar 

  46. Tajik S, Taher MA, Beitollahi H (2013) First report for simultaneous determination of methyldopa and hydrochlorothiazide using a nanostructured based electrochemical sensor. J Electroanal Chem 704:137–144. doi:10.1016/j.jelechem.2013.07.008

    Article  CAS  Google Scholar 

  47. Vahedi J, Karimi-Maleh H, Baghayeri M, Sanati A, Khalilzadeh MA, Bahrami M (2013) A fast and sensitive nanosensor based on MgO nanoparticles room-temperature ionic liquid carbon paste electrode for determination of methyldopa in pharmaceutical and patient human urine samples. Ionics 19:1907–1915. doi:10.1007/s1158

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Isfahan University of Technology (IUT) Research Council and Center of Excellent in Sensor and Green Chemistry for supporting of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali A. Ensafi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ensafi, A.A., Saeid, B., Rezaei, B. et al. Differential pulse voltammetric determination of methyldopa using MWCNTs modified glassy carbon decorated with NiFe2O4 nanoparticles. Ionics 21, 1435–1444 (2015). https://doi.org/10.1007/s11581-014-1291-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-014-1291-0

Keyword

Navigation