Skip to main content
Log in

AC impedance studies on proton-conducting PAN : NH4SCN polymer electrolytes

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Solid polymer electrolytes based on polyacrylonitrile (PAN) doped with ammonium thiocyanate (NH4SCN) in different molar ratios of polymer and salt have been prepared by solution-casting method using DMF as solvent. The increase in amorphous nature of the polymer electrolytes has been confirmed by XRD analysis. A shift in glass transition temperature (T g) of the PAN : NH4SCN electrolytes has been observed from the DSC thermograms which indicates the interaction between the polymer and the salt. From the AC impedance spectroscopic analysis, the ionic conductivity has been found to increase with increasing salt concentration up to 30 mol% of NH4SCN beyond which the conductivity decreases and the highest ambient temperature conductivity has been found to be 5.79 × 10−3 S cm−1. The temperature-dependent conductivity of the polymer electrolyte follows an Arrhenius relationship which shows hopping of ions in the polymer matrix. The dielectric loss curves for the sample 70 mol% PAN : 30 mol% NH4SCN reveal the low-frequency β-relaxation peak pronounced at high temperature, and it may be caused by side group dipoles. The ionic transference number of polymer electrolyte has been estimated by Wagner’s polarization method, and the results reveal that the conductivity species are predominantly ions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Baskaran R, Selvasekarapandian S, Hirankumar G, Bhuvaneswari MS (2004) J Power Sources 134:235–240

    Article  CAS  Google Scholar 

  2. Avellaneda CO, Vieira DF, Al-kahlout A, Leite ER, Pawlicka A, Aegerter MA (2007) Electrochem Acta 53:1648–1654

    Article  CAS  Google Scholar 

  3. Anantha RS, Hariharan K (2005) Solid State Ionics 176:155–162

    Article  CAS  Google Scholar 

  4. Abrahan KM, Alangir M (1990) J Electrochem Soc 137:1657–1658

    Article  Google Scholar 

  5. Abrahan KM, Alangir M (1993) J Electrochem Soc 140:L96–L97

    Article  Google Scholar 

  6. Panero S, Scrosati B (2000) J Power Sources 90:13–19

    Article  CAS  Google Scholar 

  7. Herington TM, Staveley LAK (1964) J Phys Chem Solids 25:921

    Article  Google Scholar 

  8. Hodge RM, Edward GH, Simon GP (1996) Polymer 37:1371–1376

    Article  CAS  Google Scholar 

  9. Gowariker VR, Viswanathan NV, Sreedhar J (2000) Polymer science. New Age International (P), New Delhi

    Google Scholar 

  10. Jacob MME, Arof AK (2000) Electrochem. Acta 45:1701

  11. Hema M, Selvasekarapandian S, Hirankumar G, Sakunthala A, Nithya H (2009) J Phys Chem Solids 70:1098–1103

    Article  CAS  Google Scholar 

  12. Boukamp BA (1986) Solid State Ionics 20:301

    Article  Google Scholar 

  13. Boukamp BA (1986) Solid State Ionics 18:136

    Article  Google Scholar 

  14. Zhu W, Wang X, Yang B, Tang X (2001) Polym Sci B Polym Phys 39:1246

    Article  CAS  Google Scholar 

  15. Takakazu Yamamoto, Minoru Inami, Takaki Kanabara, (1994) Chem. Mater 44

  16. Takshashi Y (1973) J Polym Sci 11:213

    Google Scholar 

  17. Funke K (1998) Solid State Ionics 28:100

    Google Scholar 

  18. Nithya H, Selvasekarapandian S, Christopher Selvin P, Arun kumar D, Kawamura J (2012) Electrochim Acta 66:110–120

    Article  CAS  Google Scholar 

  19. Ramya CS, Selvasekarapandian S, Savitha T, Hirankumar G (2007) Physica B 11:393

    Google Scholar 

  20. Dutta P, Biswas S (2002) Mater Res Bull 37:193–200

    Article  CAS  Google Scholar 

  21. Pillai PKC, Khurana P, Tripattan A (1986) J Mater Sci 5:629–632

    Google Scholar 

  22. Vijayalakshmi Rao R, Sridhar MH (2002) Mater Lett 55:34–40

    Google Scholar 

  23. Dutta P, Biswas S, Subodhkumar D (2002) Mater Res Bull 37:193–200

    Google Scholar 

  24. Moon GH, Seung SI (2001) J Appl Poly Sci 83:2760–2769

    Google Scholar 

  25. Karabanova LV, Boiteux G, Gain O, Seytre G, Bondaranko PA (2003) J Appl Poly Sci 90:1191–1201

    Google Scholar 

  26. Armstrong RD, Dickinson T, Wills PM (1974) J Electronal chem 3:53

    Google Scholar 

  27. Armstrong RD, Race WP (1976) J Electronal Chem 74:125

    Article  Google Scholar 

  28. Singh KP, Gupta PN (1998) Eur Polym J 34(7):1023

    Article  CAS  Google Scholar 

  29. Wagner JB, Wagner C (1957) J Chem Phys 26:1597

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Selvasekarapandian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nithya, S., Selvasekarapandian, S., Karthikeyan, S. et al. AC impedance studies on proton-conducting PAN : NH4SCN polymer electrolytes. Ionics 20, 1391–1398 (2014). https://doi.org/10.1007/s11581-014-1091-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-014-1091-6

Keywords

Navigation