Skip to main content

Advertisement

Log in

A decision-making model based on a spiking neural circuit and synaptic plasticity

  • Research Article
  • Published:
Cognitive Neurodynamics Aims and scope Submit manuscript

Abstract

To adapt to the environment and survive, most animals can control their behaviors by making decisions. The process of decision-making and responding according to cues in the environment is stable, sustainable, and learnable. Understanding how behaviors are regulated by neural circuits and the encoding and decoding mechanisms from stimuli to responses are important goals in neuroscience. From results observed in Drosophila experiments, the underlying decision-making process is discussed, and a neural circuit that implements a two-choice decision-making model is proposed to explain and reproduce the observations. Compared with previous two-choice decision making models, our model uses synaptic plasticity to explain changes in decision output given the same environment. Moreover, biological meanings of parameters of our decision-making model are discussed. In this paper, we explain at the micro-level (i.e., neurons and synapses) how observable decision-making behavior at the macro-level is acquired and achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  • Ananthanarayanan R, Modha DS (2007) Anatomy of a cortical simulator. In: Proceedings of the 2007 ACM/IEEE conference on supercomputing. ACM, p 3

  • Bell CC, Han VZ, Sugawara Y, Grant K (1997) Synaptic plasticity in a cerebellum-like structure depends on temporal order. Nature 387(6630):278–281

    Article  CAS  PubMed  Google Scholar 

  • Bi G-Q, Poo M-M (1998) Synaptic modifications in cultured hippocampal neurons: dependence on spike timing, synaptic strength, and postsynaptic cell type. J Neurosci 18(24):10464–10472

    CAS  PubMed  Google Scholar 

  • Bogacz R, Brown E, Moehlis J, Holmes P, Cohen JD (2006) The physics of optimal decision making: a formal analysis of models of performance in two-alternative forced-choice tasks. Psychol Rev 113(4):700

    Article  PubMed  Google Scholar 

  • Bohte SM, Poutré HL, Kok JN (2002) Unsupervised clustering with spiking neurons by sparse temporal coding and multilayer RBF networks. IEEE Trans Neural Netw 13(2):426–435

    Article  CAS  PubMed  Google Scholar 

  • Busemeyer JR, Townsend JT (1993) Decision field theory: a dynamic-cognitive approach to decision making in an uncertain environment. Psychol Rev 100(3):432

    Article  CAS  PubMed  Google Scholar 

  • Carandini M (2012) From circuits to behavior: a bridge too far? Nat Neurosci 15(4):507–509

    Article  CAS  PubMed  Google Scholar 

  • Eliasmith C, Stewart TC, Choo X, Bekolay T, DeWolf T, Tang Y, Rasmussen D (2012) A large-scale model of the functioning brain. Science 338(6111):1202–1205

    Article  CAS  PubMed  Google Scholar 

  • Foderaro G, Henriquez C, Ferrari S (2010) Indirect training of a spiking neural network for flight control via spike-timing-dependent synaptic plasticity. In: 49th IEEE conference on decision and control (CDC). IEEE, pp 911–917

  • Gerstner W, Kempter R, van Hemmen JL (1996) A neuronal learning rule for sub-millisecond temporal coding. Nature 383:76–78 (LCN-ARTICLE-1996-002)

    Article  CAS  PubMed  Google Scholar 

  • Izhikevich EM, Edelman GM (2008) Large-scale model of mammalian thalamocortical systems. Proc Nat Acad Sci 105(9):3593–3598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Izhikevich EM et al (2003) Simple model of spiking neurons. IEEE Trans Neural Netw 14(6):1569–1572

    Article  CAS  PubMed  Google Scholar 

  • Li X, Chen Q, Xue F (2016) Bursting dynamics remarkably improve the performance of neural networks on liquid computing. Cognit Neurodyn 10(5):415–421

    Article  Google Scholar 

  • Markram H (2006) The blue brain project. Nat Rev Neurosci 7(2):153–160

    Article  CAS  PubMed  Google Scholar 

  • Markram H, Lübke J, Frotscher M, Sakmann B (1997) Regulation of synaptic efficacy by coincidence of postsynaptic APs and EPSPs. Science 275(5297):213–215

    Article  CAS  PubMed  Google Scholar 

  • Natschläger T, Ruf B (1998) Spatial and temporal pattern analysis via spiking neurons. Netw Comput Neural Syst 9(3):319–332

    Article  Google Scholar 

  • Nishiyama M, Hong K, Mikoshiba K, Poo M-M, Kato K (2000) Calcium stores regulate the polarity and input specificity of synaptic modification. Nature 408(6812):584–588

    Article  CAS  PubMed  Google Scholar 

  • Qu J, Wang R, Yan C, Du Y (2014) Oscillations and synchrony in a cortical neural network. Cognit Neurodyn 8(2):157–166

    Article  Google Scholar 

  • Ratcliff R (1978) A theory of memory retrieval. Psychol Rev 85(2):59

    Article  Google Scholar 

  • Ratcliff R, Rouder JN (1998) Modeling response times for two-choice decisions. Psychol Sci 9(5):347–356

    Article  Google Scholar 

  • Samura T, Ikegaya Y, Sato YD (2015) A neural network model of reliably optimized spike transmission. Cognit Neurodyn 9(3):265–277

    Article  Google Scholar 

  • Tang S, Guo A (2001) Choice behavior of drosophila facing contradictory visual cues. Science 294(5546):1543–1547

    Article  CAS  PubMed  Google Scholar 

  • Usher M, McClelland JL (2001) The time course of perceptual choice: the leaky, competing accumulator model. Psychol Rev 108(3):550

    Article  CAS  PubMed  Google Scholar 

  • Vickers D (1970) Evidence for an accumulator model of psychophysical discrimination. Ergonomics 13(1):37–58

    Article  CAS  PubMed  Google Scholar 

  • Waldrop MM (2012) Computer modelling: brain in a box. Nature 482(7386):456–458

    Article  CAS  PubMed  Google Scholar 

  • Wang X-J (2002) Probabilistic decision making by slow reverberation in cortical circuits. Neuron 36(5):955–968

    Article  CAS  PubMed  Google Scholar 

  • Wittenberg GM, Wang SS-H (2006) Malleability of spike-timing-dependent plasticity at the CA3-CA1 synapse. J Neurosci 26(24):6610–6617

    Article  CAS  PubMed  Google Scholar 

  • Zhang K, Guo JZ, Peng Y, Xi W, Guo A (2007) Dopamine-mushroom body circuit regulates saliency-based decision-making in drosophila. Science 316(5833):1901–1904

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Xu Z, Henriquez C, Ferrari S (2013) Spike-based indirect training of a spiking neural network-controlled virtual insect. In: IEEE 52nd annual conference on decision and control (CDC). IEEE, pp 6798–6805

  • Zhao J, Deng B, Qin Y, Men C, Wang J, Wei X, Sun J (2016) Weak electric fields detectability in a noisy neural network. Cognit Neurodyn 11:81–90

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by NSFC project (Project No.61375122), and in part by Shanghai Science and Technology Development Funds (Grant Nos. 13dz2260200, 135115 04300). We thank LetPub (www.letpub.com) and Accdon for their linguistic assistance during the preparation of this manuscript. The authors declare that there is no conflict of interest regarding the publication of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Wei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, H., Bu, Y. & Dai, D. A decision-making model based on a spiking neural circuit and synaptic plasticity. Cogn Neurodyn 11, 415–431 (2017). https://doi.org/10.1007/s11571-017-9436-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11571-017-9436-2

Keywords

Navigation