Skip to main content

Advertisement

Log in

Three new genera of fungi from extremely acidic soils

  • Original Article
  • Published:
Mycological Progress Aims and scope Submit manuscript

Abstract

Extremely acidic soils (pH < 3) harbour poorly diversified mycobiota that are very different from less acidic habitats. During investigations of the mycobiota from several highly acidic soils in the Czech Republic and a coastal site in the Antarctic Peninsula, a group of hyaline fungal isolates was obtained. Based on phenotype and nuclear ribosomal DNA sequences (ITS region, SSU, LSU), the isolates belonged to three phylogenetic lineages within two different classes, Sordariomycetes and Leotiomycetes (Pezizomycotina, Ascomycota). The first lineage is described here as a new genus and species Acidothrix acidophila gen. nov. et sp. nov. (Amplistromataceae, Sordariomycetes, Ascomycota). The most closely related species to this new clade are wood-inhabiting fungi. The isolates belonging to the second and the third lineages are also described as two new genera and species Acidea extrema gen. nov. et sp. nov. and Soosiella minima gen. nov. et sp. nov. (Helotiales, Leotiomycetes, Ascomycota). Their position and the relationships within Helotiales are discussed. Soosiella minima was acidotolerant, Acidothrix acidophila and Acidea extrema exhibited both acidotolerant and acidophilic characteristics. All the species were slightly halophilic. The adaptation of hyaline fungi from mesophilic lineages to highly acidic environments has been revealed. The association between highly acidic and Antarctic habitats is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Altschul SF, Madden TL, Schaffer AA, Zhang JH, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acid Res 25:3389–3402

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Amaral Zettler LA (2013) Eukaryotic diversity at pH extremes. Front Microbiol 3:1–17

    Article  Google Scholar 

  • Amaral Zettler LA, Gomez F, Zettler E, Keenan BG, Amils R, Sogin ML (2002) Eukaryotic diversity in Spain’s river of fire. Nature 417:137

    Article  CAS  PubMed  Google Scholar 

  • Amaral Zettler LA, Messerli MA, Laatsch AD, Smith PJS, Sorgin ML (2003) From genes to genomes: beyond biodiversity in Spain’s Rio Tinto. Biol Bull 204:205–209

    Article  CAS  PubMed  Google Scholar 

  • Arenz BE, Blanchette RA (2009) Investigations of fungal diversity in wooden structures and soils at historic sites on the Antarctic Peninsula. Can J Microbiol 55:46–56

    Article  CAS  PubMed  Google Scholar 

  • Arenz BE, Blanchette RA (2011) Distribution and abundance of soil fungi in Antarctica at sites on the Peninsula, Ross Sea Region and McMurdo Dry Valleys. Soil Biol Biochem 43:308–315

    Article  CAS  Google Scholar 

  • Baker BJ, Lutz MA, Dawson SC, Bond PL, Banfield JF (2004) Metabolically active eukaryotic communities in extremely acidic mine drainage. Appl Environ Microbiol 70(10):6264–6271

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Baker BJ, Tyson GW, Goosherst L, Banfield JF (2009) Insights into the diversity of eukaryotes in acid mine drainage biofilm communities. Appl Environ Microbiol 75(7):2192–2199

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cavicchioli R, Torsten T (2000) Extremophiles. In: Lederberg J (ed) Encyclopedia of microbiology, vol 2, 2nd edn. Academic Press Inc., San Diego, pp 317–337

  • Checa J, Blanco MN, Moreno G, Manjón JL, Pasabán P, Alvarado P (2012) Amplistroma longicollis, a new species and its anamorph state described and sequenced from Europe. Mycol Prog 11:647–653

    Article  Google Scholar 

  • Checa J, Blanco MN, Moreno G, Alvarado P, Esquivel E (2013) Amplistroma erinaceum, a new species and its anamorph state from Panama. Mycol Prog. doi:10.1007/s11557-013-0912-8

    Google Scholar 

  • Corum CJ (1941) Hydrogen-ion concentration and the initiation of growth. Ohio J Sci 41(5):389–392

    CAS  Google Scholar 

  • Fassatiová O (1986) Moulds and filamentous fungi in technical microbiology. Elsevier, New York

    Google Scholar 

  • Gardes M, Bruns TD (1993) ITS primers with enhanced specificity for basidiomycetes - application to the identification of mycorrhizae and rusts. Mol Ecol 2:113–118

    Article  CAS  PubMed  Google Scholar 

  • Gimmler H, de Jesus J, Greiser A (2001) Heavy metal resistance of the extreme acidotolerant filamentous fungus Bispora sp. Microb Ecol 42:87–98

    CAS  PubMed  Google Scholar 

  • Griffin DH (1994) Fungal physiology. Wiley, New York

    Google Scholar 

  • Guindon S, Gascuel O (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52:696–704

    Article  PubMed  Google Scholar 

  • Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp 41:95–98

    CAS  Google Scholar 

  • Hölker U, Bend J, Pracht R, Tetsch L, Müller T, Höfer M, de Hoog GS (2004) Hortaea acidophila, a new acid-tolerant black yeast from lignite. Anton Leeuw 86:287–294

    Article  Google Scholar 

  • Huelsenbeck JP, Ronquist F (2001) MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17:754–755

    Article  CAS  PubMed  Google Scholar 

  • Huhndorf SM, Miller AN, Greif M, Samuels MG (2009) Amplistroma gen. nov. and its relation to Walrothiella, two genera with globose ascospores and acrodontium-like anamorphs. Mycologia 101(6):904–919

    Article  PubMed  Google Scholar 

  • Hujslová M, Kubátová A, Chudíčková M, Kolařík M (2010) Diversity of fungal communities in saline and acidic soils in the Soos National Natural Reserve, Czech Republic. Mycol Prog 9:1–15

    Article  Google Scholar 

  • Hujslová M, Kubátová A, Kostovčík M, Kolařík M (2013) Acidiella bohemica gen. et sp. nov. and Acidomyces spp. (Teratosphaeriaceae), the indigenous inhabitants of extremely acidic soils in Europe. Fungal Divers 58:33–45

    Article  Google Scholar 

  • Kauff F, Lutzoni F (2002) Phylogeny of the Gyalectales and Ostropales (Ascomycota, Fungi): among and within order relationships based on nuclear ribosomal RNA small and large subunits. Mol Phylogenet Evol 25:138–156

    Article  CAS  PubMed  Google Scholar 

  • Krauss GJ, Solé M, Krauss G, Schlosser D, Wesenberg D, Bärlocher F (2011) Fungi in freshwaters: ecology, physiology and biochemical potential. Fems Microbiol Rev 35:620–651

    Article  CAS  PubMed  Google Scholar 

  • Kushner DJ (1978) Life in high salt and solute concentrations. In: Kushner DJ (ed) Microbial life in extreme environments. Academic, London, pp 317–368

    Google Scholar 

  • López-Archilla AI, Amils R (1999) A comparative ecological study of two acidic rivers in southwestern Spain. Microb Ecol 38:146–156

    Article  PubMed  Google Scholar 

  • López-Archilla AI, Marin I, Amils R (2001) Microbial community composition and ecology of an acidic aquatic environment: the Tinto River, Spain. Microb Ecol 41:20–35

    PubMed  Google Scholar 

  • López-Archilla AI, González AE, Terrón MC, Amils R (2004) Ecological study of the fungal populations of the acidic Tinto River in southwestern Spain. Can J Microbiol 50:923–934

    Article  PubMed  Google Scholar 

  • Mehrotra MD (1964) Studies on choanephoraceae. 11. Effect of hydrogen-ion concentration. Sydowia (Ann Mycologici Ser II) 17:223–229

    Google Scholar 

  • Miller MA, Pfeiffer W, Schwartz T (2010) Creating the CIPRES science gateway for inference of large phylogenetic trees. 2010 Gateway Computing Environments Workshop, GCE 2010

  • Munsell Color Company (1966) Munsell book of color. Munsell Color Company, Baltimore

    Google Scholar 

  • Notredame C, Higgins DG, Heringa J (2000) T-Coffee: a novel method for fast and accurate multiple sequence alignment. J Mol Biol 302:205–217

    Article  CAS  PubMed  Google Scholar 

  • O’Donnell K (1993) Fusarium and its near relatives. In: Reynolds DR, Taylor JW (eds) The fungal holomorph: mitotic, meiotic, and pleomorphic speciation in fungal systematics. CAB International, Wallingford, pp 225–236

    Google Scholar 

  • Pažoutová S, Šrůtka P, Holusa J, Chudíčková M, Kubátová A, Kolařík M (2012) Liberomyces gen. nov. with two new species of endophytic coelomycetes from broadleaf trees. Mycologia 104(1):198–210

    Article  PubMed  Google Scholar 

  • Pitt JI (1980) The genus Penicillium and its teleomorphic states Eupenicillium and Talaromyces. Academic, London

    Google Scholar 

  • Poirot O, O’Toole E, Notredame C (2003) Tcoffee@igs: a web server for computing, evaluating and combining multiple sequence alignments. Nucleic Acid Res 31:3503–3506

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Posada D (2008) jModelTest: phylogenetic model averaging. Mol Biol Evol 25:1253–1256

    Article  CAS  PubMed  Google Scholar 

  • Rambaut A, Drummond A (2003) Tracer v1. 4. 2007. Available free from http://beast.bio.ed.ac.uk/Tracer

  • Selbmann L, de Hoog GS, Zucconi L, Isola D, Ruisi S, Gerrits van den Ende AHG, Ruibal C, De Leo F, Urzì C, Onofri S (2008) Drought meets acid: three new genera in a dothidealean clade of extremotolerant fungi. Stud Mycol 61:1–20

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Stamatakis A (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22:2688–2690

    Article  CAS  PubMed  Google Scholar 

  • Verma V (1969) Effect of temperature and hydrogen–ion concentration on three pathogenic fungi. Sydowia 23:164–168

    Google Scholar 

  • von Kreisel H, Schauer F (1987) Methoden des mykologischen Laboratoriums. Gustav Fischer Verlag, Stuttgart and New York

    Google Scholar 

  • Wang Z, Binder M, Schoch CL, Johnston PR, Spatafora JW, Hibbett DS (2006a) Evolution of helotialean fungi (Leotiomycetes, Pezizomycotina): a nuclear rDNA phylogeny. Mol Phylogenet Evol 41:295–312

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Johnston PR, Takamatsu S, Spatafora JW, Hibbett DS (2006b) Toward a phylogenetic classification of the Leotiomycetes based on rDNA data. Mycologia 98(6):1065–1075

    Article  CAS  PubMed  Google Scholar 

  • White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky J, White TJ (eds) PCR protocols: a guide to methods and applications. Academic, San Diego, pp 315–322

    Google Scholar 

  • Yamazaki A, Toyama K, Nakagiri A (2010) A new acidophilic fungus Teratosphaeria acidotherma (Capnodiales, Ascomycota) from a hot spring. Mycoscience 51:443–455

    Article  Google Scholar 

  • Zabel RA, Morrell JJ (1992) Wood microbiology, decay and its prevention. Academic Press, Inc., San Diego

    Google Scholar 

  • Zak JC, Wildman HG (2004) Fungi in stressful environments. In: Mueller GM, Bills GF, Foster MS (eds) Biodiversity of fungi, inventory and monitoring methods. Elsevier/Academic, London, pp 303–315

    Chapter  Google Scholar 

Download references

Acknowledgments

This work was supported by the Grant Agency of the Charles University in Prague (project No. 63009), by Czech Institutional Research Concept (No. AV0Z5020903), and by the institutional resources of the Ministry of Education, Youth and Sports of the Czech Republic. We thank the staff of Soos National Natural Reserve and Sedlecky kaolin a. s. for the permission to sample. We are grateful to Ota Rauch for the selection of localities and Radek Pelc for technical assistance. Research in Antarctica was supported by National Science Foundation Grant No. 0537143 to RAB. We would like to thank the British Antarctic Survey (BAS) and the crew of the HMS Endurance for facilitating travel to sites on the Antarctic Peninsula and Dr. Brett Arenz for his work to collect isolates on Snow Hill Island. The senior author also acknowledges the Forestry and Agricultural Biotechnology Institute (FABI) at the University of Pretoria, South Africa, for support during a sabbatical visit to the Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martina Hujslová.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hujslová, M., Kubátová, A., Kostovčík, M. et al. Three new genera of fungi from extremely acidic soils. Mycol Progress 13, 819–831 (2014). https://doi.org/10.1007/s11557-014-0965-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11557-014-0965-3

Keywords

Navigation